
Dead-Block Elimination in Cache: A Mechanism

to Reduce I-cache Power Consumption
in High Performance Microprocessors

Mohan G. Kabadi, Natarajan Kannan, Palanidaran Chidambaram,
Suriya Narayanan, M. Subramanian, and Ranjani Parthasarathi

School of Computer Science and Engineering
Anna University, Chennai - 600 025, India

{mohan kabdi,natarajan,palanidaran,mssnlayam,rp}@cs.annauniv.edu

Abstract. Both power and performance are important design param-
eters of the present day processors. This paper explores an integrated
software and circuit level technique to reduce leakage power in L1 in-
struction caches of high performance microprocessors, by eliminating
basic blocks from the cache, as soon as they are dead. The effect of
this dead block elimination in cache on both the power consumption of
the I-cache and the performance of the processor is studied. Identifica-
tion of basic blocks is done by the compiler from the control flow graph
of the program. This information is conveyed to the processor, by anno-
tating the first instruction of selected basic blocks. During execution, the
blocks that are not needed further are traced and invalidated and the
lines occupied by them are turned off. This mechanism yields an average
of about 5% to 16% reduction, in the energy consumed for different sizes
of I-cache, for a set of the SPEC CPU 2000 benchmarks [16], without
any performance degradation.

1 Introduction

In the present scenario, silicon area and power have become important con-
straints on the designers. New technical developments are being implemented
to overcome the former constraint. The fabrication technology of VLSI circuit
is steadily improving and the chip structures are being scaled down. But, the
number of transistors on a chip is increasing at a higher ratio. Also, the drive
towards increasing levels of performance has pushed the operating clock fre-
quencies higher and higher, which has resulted in an increased level of power
consumption [1].

Power has thus become important, not only for wireless and mobile elec-
tronics, but also for high performance microprocessors. It should therefore be
considered a “first class” design constraint on par with performance [2].

There has been considerable work on low power processors as evidenced in the
literature. Many of these have focused on reducing power/energy in the memory
subsystem namely multi-level I-caches [3, 4, 5, 6, 7, 17], d-caches [6, 7, 8, 9, 17]

S. Sahni et al. (Eds.) HiPC 2002, LNCS 2552, pp. 79–88, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

80 Mohan G. Kabadi et al.

and main memory [10, 11]. Memory subsystems, especially the on-chip caches
have caught the attention of designers for the reason that, they are dominant
sources of power consumption. Caches often consume 80% of the total transistor
count and 50% of the area [12]. Hence cache subsystems have been the primary
area of focus for power reduction.

Several techniques have been proposed to reduce the power dissipated by on-
chip caches. These techniques can be grouped under (i) architectural alternatives
adopting dynamic [5, 6] or static methods [13] and (ii) Software techniques using
compiler support [3, 8]. In recent years, software techniques have been receiving
more attention in building low power systems. The idea here is that the compiler
can assist the microarchitecture in reducing the power consumption of programs
either by giving explicit information on program behavior or by optimization.
Ideas that have been explored include use of a reduced size cache/buffer to
store inner loops [3], and the use of loop transformations to improve the perfor-
mance of the program, thereby reducing the energy consumed [8]. However, these
approaches are effective only for loop intensive programs. This paper presents
a more generic, novel, compiler-assisted technique, wherein, selected lines of the
cache are turned off under program control, resulting in reduction of power con-
sumption. This approach takes care of both loop-intensive and non loop-intensive
programs.

This paper is organized as follows: In section 2, a brief review of the related
work relevant to the proposed approach is presented. In section 3, the proposed
method, Dead-Block Elimination in Cache (DBEC) is described. In section 4,
the hardware modifications required for the proposed method are outlined.

The experimental methodology and the results of the simulation are given in
section 5 and section 6 concludes the paper.

2 Related Work

As mentioned in the previous section, compiler supported power minimization
is a field of active research. A few of the techniques relevant to the proposed
work are presented below. In the approach taken by Nikolaos Bellas et al. [3],
a small L-cache similar to the Filter cache [13], is added between the CPU
and the I-cache, for buffering instructions (basic blocks) that are nested within
loops. However, the basic blocks within loops that contain function calls are not
considered for placement in the L-cache. The profile data from previous runs is
used to select the best instructions to be cached.

Another approach taken by Hongbo Yang et al. [8], is based on the fact that
performance improvement causes a reduction in execution time and hence energy
saving can be achieved. Here, the impact of loop optimizations on performance of
program vs power are compared. Compiler optimizations namely loop unrolling,
loop permutation, loop tiling and loop fusion are shown to improve program
performance, which is correlated positively with the energy reduction.

Other techniques that have been explored are hardware-based or
architecture-based. Gated-Vdd [4] is a circuit-level technique to gate the sup-

Dead-Block Elimination in Cache 81

ply voltage and reduce leakage in unused SRAM cells. The DRI I-cache [5],
dynamically reacts to application demand, and adapts to the required cache size
during an application’s execution. This work uses Gated-Vdd mechanism at the
circuit-level, to turn-off the supply voltage to the cache’s unused sections, thus
reducing leakage power. The DRI I-cache integrates architectural and circuit
level techniques to reduce leakage in an L1 I-cache.

On a similar line as that of DRI I-cache, in the approach used by Kaxiras et
al [9, 17], parts of the L1 d-cache are switched off at a much finer granularity (i.e.
line granularity) and without resizing. The key idea here is that, if a cache line is
not accessed within a predefined fixed interval, the supply voltage to that line is
turned off using the Gated-Vdd mechanism. This approach uses a static turn-off
interval which is set on an individual application basis, to obtain optimal results.

In the approach followed by Huiyang Zhou et al. [6], a hardware counter called
Line Idle Counter (LIC) is used, to keep track of the length of the period a line
remains idle, before it gets turned off. The Mode-Control Logic (MCL) compares
the LIC value to the turn-off interval stored in a Global Control Register. The
miss rate and performance factor are dynamically monitored to set the Global
Control Register, periodically, at the end of a statically set predefined interval.

3 Dead-Block Elimination in Cache (DBEC)

The work done in [4, 5, 6] has shown that, dynamically turning off sections of the
I-cache and resizing it, results in significant leakage-power savings. Motivated by
this approach, the current work explores the “turning-off” of the unused I-cache
lines using a software-directed approach. In [5, 6] the time at which a line can be
turned off is determined at runtime based on a saturating counter. The choice of
the saturation value directly affects performance, as the saturation value is only
an estimate of the non-usage of a line. Too large a value would result in reduced
power saving, while too small a value would evict the line earlier from the cache,
resulting in a miss and thus reducing performance. An optimal value has to be
chosen based on the application. Even this application dependent static choice of
the saturation value is only an estimate. However, more precise information on
when a line is going to be “dead” can be directly obtained from the compiler. The
compiler support for pointing out when a block is dead is used in the proposed
approach.

The proposed DBEC scheme consists of invalidating and turning-off power
to cache lines that are occupied by the “dead” instructions i.e., the instructions
that are not “live” at a particular point of program execution. These are the
instructions that would not be used again before being replaced in the cache.
The information on whether an instruction is “dead” at a particular point of
program execution is obtained from the compiler. The granularity at which the
dead instructions are handled is a basic block. The compiler identifies basic
blocks from the CFG and indicates the beginning and end of the basic blocks
in the code. When the program is executed, these indications are used by the

82 Mohan G. Kabadi et al.

Fig. 1. Segment of a Control Flow Graph

microarchitecture to turn-off dead blocks. The mechanism used, is explained
below with an example.

A basic block [14], is a sequence of consecutive statements, in which the flow
of control enters at the beginning and leaves at the end, without the possibility
of branching, except at the end. Figure 1 shows a segment of a Control Flow
Graph. Bis are the basic blocks. B3 is a loop inside an outer loop containing
basic blocks B2, B3 and B4.

The first statement of each basic block is annotated during the compilation
stage. The annotations help to keep track of the basic blocks which are exe-
cuted. B2 is the block through which control enters the outer loop. The first
statement of B2 is annotated. Whereas B3 and B4 are part of the same outer
loop and hence, the first statement of these blocks are not annotated. The key
idea of DBEC is that the annotated statements help in identifying the blocks ex-
ecuted in the just completed outermost loop. This is done to make sure that B2

and B3 are not turned off when B4 is under execution. When the annotated
statement of B2 is under execution, the block B1 is completely executed. Hence,
the cache lines completely occupied by the instructions of B1 are turned-off.
Similarly, the execution of first statement of B5 will cause an invalidation of the
lines occupied by the previous loop. i.e., as B2, B3 and B4 are turned off. Thus,
the instant at which the particular block is going to be “dead” is exactly deter-
mined, there is negligible performance degradation in this approach. The earlier
approaches [4, 5], [6], have achieved power saving at the cost of performance.
Further, this being a static approach supported by the compiler, the runtime
architectural overhead of this approach is also negligible.

4 Hardware Modification

The only hardware modification that is required in the DBEC approach is that,
with each line of I-cache, one bit called the “turn-off bit” is added to the tag
bits. These turn-off bits are initially unset at the start of program execution.
The turn-off bits corresponding to lines of cache which contain the code for
a loop are set. This is used to turn off these lines, when the execution of the loop
is completed. This is achieved using the Gated-Vdd technique. The operation
can be explained using the same example given in the previous section. Against
execution of the first annotated statement of B1, the processor sets the turn-off
bits of those lines from which the instruction of B1 are fetched. An instance of
the various bytes in each line occupied by the B1 block is shown in figure 2.

Dead-Block Elimination in Cache 83

Fig. 2. A segment of the cache with tag bits

Also, the turn-off bits for those lines after the execution of B1 are shown in the
same figure. The turn-off bit of line L3 is not set, indicating that the line is
to be retained even after the execution of B1. This is because line L3 is only
partially filled with code from B1, and contains some code from B2 also. When
the control of execution reaches the beginning of block B2, the annotated first
statement of B2 will cause the invalidation and turning-off of the lines whose
turn-off bits were previously marked for this purpose. Hence, the lines L1 and
L2 are now turned-off. The turn-off bit of line L3 is set only when B2 is taken
up for execution. When B2 completes execution, line L3 is turned off.

5 Experimental Methodology and Results

The SimpleScalar 2.0 toolkit [15] is used to implement the proposed idea. Bench-
marks art, equake, gzip and mcf of the SPEC CPU 2000 benchmark [16] suite
have been used to evaluate the performance.

5.1 Experimental Setup

The out-of-order superscalar processor simulator of the SimpleScalar toolkit has
been used to simulate switching off of the cache lines when annotated instruc-
tions are encountered in the instruction stream. All the benchmarks have been
compiled using the C compiler gcc-2.6.3 for the SimpleScalar toolkit which has
been modified to annotate instructions that aid switching off of cache lines.

The various phases in the compilation are as shown in figure 3. The source
programs of the SPEC benchmark suite are compiled using gcc with the -S flag
to get the assembly files. These assembly files are the input to the annotator
which annotates instructions as explained below.

The annotator annotates instructions in three ways to aid the processor in
switching off cache lines. The first type of annotation indicates that the cache
lines whose “turn-off” bit has been set are to be switched off. This annotation is
normally performed for instructions that begin a basic block. In the case of loops,
only the first basic block of the loop is annotated so that the basic blocks within

84 Mohan G. Kabadi et al.

Fig. 3. Phases in the generation of annotated SimpleScalar executable

Table 1. Parameters used in the simulation

Parameter Value

Fetch width 4 instructions per cycle
Decode width 4 instructions per cycle
Commit width 4 instructions per cycle
L1 I-cache 256, 512, 1024 and 2048 lines

L1 I-cache line size 32 bytes
L1 I-cache associativity 1-way (Direct mapped)
L1 I-cache latency 1 cycle

L1 D-cache 16 K, 4-way, 32 byte blocks
L2 unified cache 256 K, 4-way, 64 byte blocks

L2 unified cache latency 6 cycles

the loop do not switch off other basic blocks of the same loop. This ensures
that cache lines containing the loop code are not switched off. The second type
of annotation indicates that the next instruction is a “call instruction” within
a loop. The third type of annotation indicates that the previous instruction was
a function call which was part of a loop. The second and third annotations ensure
that the functions which are called from within a loop do not switch off the cache
lines that contain the code of that loop. The assembly files thus annotated are
converted to SimpleScalar executable using gcc.

The implementation of the second and third type of annotation requires
simple architectural support in the form of a dedicated counter. The annotation
before the call increments the counter and the instruction following it decrements
the same. Switching off of the cache lines is performed only when this counter’s
value is zero indicating that the code under execution is not part of any loop.
The instructions to manipulate the dedicated counter, which keeps track of entry
and exit of calls, are added. An alternative is to have a dedicated register and
use the increment and decrement instructions of the existing ISA before and
after the function calls.

Dead-Block Elimination in Cache 85

Table 2. I-cache miss rates for the base model and the DBEC with 512 lines
each

Program Miss rate for the base model Miss rate with DBEC

art 0.0001 0.0001
equake 0.0103 0.0103
gzip 0.02 0.02
mcf 0.0045 0.0047

The SimpleScalar simulator is modified to switch off cache lines according
to annotations added by the compiler. The simulator is used to collect results
regarding power consumption.

5.2 Simulation Results

The main parameters considered in the evaluation of this implementation are
the reduction in power consumption and miss rate. The leakage power for the
cache is proportional to the total number of cache lines that are switched-on
in the cache [9]. Hence the total number of lines switched off is taken to be an
estimate of the power savings achieved.

% Power Saved =

(
1−

∑
(No. of active lines × Duration of Activity)

Total number of lines × Total duration

)
× 100

Miss rate has been considered to study the impact of this technique on perfor-
mance. The number of instructions considered while executing the benchmarks
is 4 billion. The cache-related parameters used in the simulation model are given
in table 1.

Table 2 gives the miss rates of the modified programs and the base programs
of the SPEC 2000 benchmark suite. It can be seen that there is no significant
difference in the miss rates. This is as expected, because the DBEC will turn-off
a line only after an instruction is “dead”. Thus the capacity and conflict misses
of DBEC model will be same as the base model. Hence, there is no degradation
in performance.

Figure 4 shows the power savings obtained for various benchmark programs
as the number of cache lines varies from 256 to 2048, with all the cache lines
initially on. It can be seen that, while three programs give a modest power saving
of about 2-10%, one program art, records a maximum power saving of about 50%
for 512 lines and about 40% for 1024 lines. This may be explained by the fact
that DBEC consumes less power when the program consists of many independent
loops, and art is one such program. The variation of the power saving for each
program, as the number of lines of cache is varied shows an interesting pattern.
It increases as the number of cache lines is increased from 256 onwards and then
decreases as the number of cache lines is increased beyond 512/1024. One reason
for this could be that, the cache lines are assumed to be initially on, and if all
the lines of the cache are not used, the power saving decreases.

86 Mohan G. Kabadi et al.

Fig. 4. Variation in I-cache power savings with number of cache lines

Fig. 5. Power savings for 512 line caches with lines initially switched on Vs off

To study this further, the programs were executed with cache lines initially
turned off. One of the programs (art), was run for different cache sizes. It was
found that, as the number of cache lines increased from 256 to 2048, the power
saving consistently increased. Figure 5 shows the comparison of power saved for
a cache of 512 lines for the different programs. As expected, the power saving is
higher when the cache lines are initially off.

Further, from figure 4 it is observed that the equake program shows a power
saving of only 1.56% for a cache size of 512 lines. One reason for this could be that
with 4 billion instructions equake would just be out of its initialisation phase [18].
To explore this further this program was run for 25 billion instructions and the
fraction of the power saved was recorded at different instruction counts. The
result of this is shown in figure 6. The power saved is not considerable till 7 billion
instructions. Beyond 7 billion instructions, power saved gradually increases to
reach a maximum of 23% at about 14 billion instructions and starts slowly
decreasing. Actually, after 14 billion instructions the number of lines turned-off
remain more or less the same but when averaged out over the total number of
instructions, the value decreases.

Dead-Block Elimination in Cache 87

Fig. 6. Fraction of power saved versus instruction count for equake

6 Conclusion

The DBEC approach presented here, precisely identifies the blocks which are
dead at a particular point of program execution with the help of the compiler.
The performance degradation of this approach compared to the base model is
almost negligible. Thus, with this approach, it is possible to get an average power
saving of about 5% to 16%, and for certain programs a power saving of greater
than 40%, with no performance degradation.

Some paths of the programs which are never executed (due to directed
branches that are always taken in one direction) will not be turned off by this
scheme. Further work has to be done in this direction. Moreover selective anno-
tation can be used to get better saving at the cost of increased miss rate. The
DBEC has been implemented as a direct mapped cache. This can be extended
for associative caches with a little increase in hardware complexity.

References

[1] Michael K Gowan, Larry L Biro and Daniel B Jackson: “Power Considerations
in the Design of the Alpha 21264 Microprocessor,” DAC98, San Francisco, CA,
1998, pp 726-731. 79

[2] Trevor Mudge: “Power: A First class Design Constraint for Future Architectures,”
IEEE Conference, HiPC, India, 2000, pp 215-224. 79

[3] Nikolaos Bellas, Ibrahim Hajj, Constantine Polychronopoulos and George Sta-
moulis: “Architectural and Compiler support for Energy Reduction in the Mem-
ory Hierarchy of High Performance Microprocessors,” ISLPED, ACM Press New
York, USA, 1998, pp 70-75. 79, 80

[4] Michael D Powell, Se-Hyun Yang Babak Falsafi, Kaushik Roy and T N Vijaya-
kumar: “Gated-Vdd: A circuit Technique to Reduce Leakage in Deep-Submicron
Cache Memories,” ISLPED, 2000, pp 90-95. 79, 80, 81, 82

88 Mohan G. Kabadi et al.

[5] Se-Hyun Yang, Michael D Powell, Babak Falsafi, Kaushik Roy and T N Vijaya-
kumar: “An Integrated Circuit/Architectural Approach to Reducing Leakage in
Deep-Submicron High-Performance I-Caches,” Proceedings of the International
Symposium on High Performance Computer Architecture (HPCA), Jan 2001. 79,
80, 81, 82

[6] Huiyang Zhou, Mark C Toburen, Eric Rottenberg and Thomas M Conte: “Adap-
tive Mode-Control: A Low-Leakage, Power-Efficient Cache Design,” TR, Dept.
of Electrical & Computer Engg. North Carolina State University, Raleigh, NC,
27695-7914, Nov 2000. 79, 80, 81, 82

[7] Kanad Ghose and Milind B Kamble: “Reducing Power in Superscalar Processor
Caches Using Subbanking, Multiple Line Buffers and Bit- Line Segmentation,”
ISLPED, ACM Press, New York, USA, 1999, pp 70-75. 79

[8] Hongbo Yang, Guang R Gao, Andres Marquez, George Cai and Ziang Hu: “Power
and Energy Impact by Loop Transformations,” http://research.ac.upc.es/-

pact01/colp/paper12.pdf 79, 80
[9] Stefanos Kaxiras, Zhigang Hu, Girija Narlikar and Rae McLellan: “Cache-Line

Decay: A Mechanism to Reduce Cache Leakage Power,” IEEE workshop on Power
Aware Computer Systems (PACS), Cambridge, MA, USA, 2000, pp 82-96. 79,
81, 85

[10] Victor Delaluz, Mahmut Kandemir, N Vijayakrishna, Anand Sivasubramanian
and Mary Jane Irwin: “Hardware and Software Techniques for Controlling DRAM
Power Modes,” IEEE Trans. on Computers, Vol.50, No11, Nov 2001, pp 1154-1173.
80

[11] Krishna V Palem, Rodric M Rabbah, Vincent J Mooney III, Pinar Kormatz and
Kiran Puttaswamy: “Design Space Optimization of Embedded Memory Systems
via Data Remapping,” CREST-TR-02-003 GIT-CC-02-011, Feb 2002. 80

[12] John Hennessy: “The Future of Systems Research,” IEEE Computers, Aug 1999,
pp 27-33. 80

[13] J.Kin, M.Gupta and W.Mangione-Smith: “The Filter Cache: An Energy Efficient
Memory Structure,” Proc. IEEE Int’l Symp. Microarchitecture, IEEE CS Press,
1997, pp 184-193. 80

[14] Alfred V Aho, Ravi Sethi and Jeffrey D Ulman: “Compilers: Principles, Techniques
and Tools,” Addison-Wesley, ISBN : 817-808-046-X, Third Indian Reprint 2000.
82

[15] D Burger, Todd M Austin: “The Simplescalar Tool Set, version 2.0 :,” CSD Tech-
nical Report #1342. University of Wisconsin-Madison, June 1997. 83

[16] “SPEC CPU 2000 benchmark suite,” http://www.spec.org 79, 83
[17] Stefanos Kaxiras, Zhigang Hu and Margaret Martonosi: “Cache Decay: Exploiting

Generational Behavior to Reduce Cache Leakage Power,” Proc. of Int’l Symp.
Computer Architecture, ISCA, ACM Press, New York, USA, 2001, pp 240-251.
79, 81

[18] Suleyman Sair and Mark Charney: “Memory Behavior of the SPEC2000 Bench-
mark Suite,” Technical Report, IBM, 2000. 86

	Dead-Block Elimination in Cache: A Mechanism to Reduce I-cache Power Consumption in High Performance Microprocessors
	Introduction
	Related Work
	Dead-Block Elimination in Cache (DBEC)
	Hardware Modification
	Experimental Methodology and Results
	Experimental Setup
	Simulation Results

	Conclusion

