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Abstract. Exposing more instruction-level parallelism in out-of-order supersca-
lar processors requires increasing the number of dynamic in-flight instructions.
However, large instruction windows increase power consumption and latency in
the issue logic. We propose a design called Hybrid Dataflow Graph Execution
(HeDGE) for conventional Instruction Set Architectures (ISAs). HeDGE explic-
itly maintains dependences between instructions in the issue window by modi-
fying the issue, register renaming, and wakeup logic. The HeDGE wakeup logic
notifies only consumer instructions when data values arrive. Explicit consumer
encoding naturally leads to the use of Random Access Memory (RAM) instead
of Content Addressable Memory (CAM) needed for broadcast. HeDGE is distin-
guished from prior approaches in part because it dynamically inserts forwarding
instructions. Although these additional instructions degrade performance by an
average of 3 to 17% for SPEC C and Fortran benchmarks and 1.5% to 8% for
DaCapo Java benchmarks, they enable energy efficient execution in large instruc-
tion windows. The HeDGE RAM-based instruction window consumes on aver-
age 98% less energy than a conventional CAM as modeled in CACTI for 70nm
technology. In conventional designs, this structure contributes 7 to 20% to total
energy consumption. HeDGE allows us to achieve power and energy gains by
using RAMs in the issue logic while maintaining a conventional instruction set.

1 Introduction

To attain high performance, superscalar processors seek to exploit Instruction Level
Parallelism (ILP) with large instruction windows and dynamic scheduling algorithms.
The instruction issue logic is thus a key component in their design.

Current instruction window designs use a monolithic Content Addressable Memory
(CAM) because it implements broadcast efficiently for instruction wakeup. Unfortu-
nately, CAM structures scale poorly with respect to latency and power. Increasing the
size of CAMs to expose more ILP forces a tradeoff between ILP and the clock period;
larger CAMs consume disproportionately more power, which forces a tradeoff between
power and performance. This paper seeks scalable instruction issue logic to attain en-
ergy efficiency together with high performance.

Our solution replaces broadcasts in the issue logic with direct communication. Cur-
rent issue logic performs broadcast when producer instructions complete, notifying de-
pendent instructions waiting in the issue window. Prior work shows that there are few
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such consumers within the window [6]. We find that 94 to 96% of instructions produce a
result for two or fewer consumers in windows ranging from 64 to 512 instructions. This
observation motivates a design that uses dataflow encoding of dependent instructions in
the window, i.e., direct instruction communication between producers and consumers,
instead of a broadcast based on physical register names. Our design dynamically iden-
tifies and encodes consuming instructions during the register rename stage. When an
instruction produces its result, the wakeup logic identifies consumers and marks them
ready. Eliminating the need for a broadcast leads to an instruction window implemen-
tation that uses a Random Access Memory (RAM) instead of a CAM. RAMs offer two
significant advantages over CAMs: they consume significantly less energy per access
and have a faster access time.

We call our design Hybrid Dataflow Graph Execution (HeDGE) because it takes
an intermediate point between conventional superscalars and dataflow ISAs, such as
WaveScalar [24] and TRIPS [18]. HeDGE requires no changes to a conventional ISA. It
dynamically converts dependences specified with register names in the ISA as follows.
When a consumer enters the window, HeDGE register renaming adds the consumer to
a wakeup list for the producer. This logic generates a dataflow encoding, but only for
instructions in the issue window. HeDGE implements the wakeup list by adding target
fields to the reservation stations. When the number of consumers exceeds the number
of target fields, HeDGE introduces forwarding instructions. Dynamically inserting for-
warding instructions differentiates HeDGE from prior approaches to direct instruction
communication in conventional designs, which stall the pipeline [26], or continue to
use some associative logic for the instruction window [13,21], or sacrifice more ILP to
track consumers [19].

The contribution of this paper is the demonstration and design of a power efficient
instruction window that supports many in-flight instructions by using a more scalable
hardware structure. We measure HeDGE in a cycle-accurate simulator on SPEC CPU
and DaCapo Java benchmarks. Given two to four target fields in the HeDGE reserva-
tion stations and a range of issue window sizes of 64 to 512, HeDGE requires 2 to 30%
additional forwarding instructions on average. Although these instructions degrade per-
formance by an average of 3 to 17%, they enable energy efficient execution in large
instruction windows. Using CACTI to model RAM and CAM structures in 70nm tech-
nology, we find that the energy per access consumed by a HeDGE RAM is 98% less
than a CAM. In a conventional design, prior work shows that the CAM-based instruction
window contributes 7 to 20% to total energy consumption [4,10,11], and the contribu-
tion increases as a function of the window size. Assuming a conservative 10% contribu-
tion, we show that HeDGE configurations reduce total processor energy by an average
of 6%. RAMs also offer faster access times, but we do not explore this benefit here.
These results demonstrate the potential of HeDGE designs to improve power efficiency.

2 Related Work

This section describes related work in issue logic design that uses explicit dependence
tracking, that reduces issue load, and that uses dataflow ISAs. We also provide a brief
taxonomy of dependence encoding. We refer the reader to Abella et al. for a compre-
hensive survey of issue logic design [1].
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Dependence tracking. The most closely related work seeks to use direct instruction
communication to reduce the complexity of the issue logic in dynamically scheduled su-
perscalar processors [13,19,21]. These approaches explicitly track register dependences
between instructions and completely or partially avoid associative lookup during in-
struction wake up. Similar to HeDGE, these approaches rely on the observation that
only a few dependent instructions are typically in the issue window at a time and there-
fore propagate result tags only to those instructions in the window. However, none of
these approaches considered or modeled energy-delay benefits.

Similar to HeDGE, Önder and Gupta use a fixed fanout degree [19]. However, when
the number of targets exceeds the fanout degree, they encode the chain of forwarding
instructions together with the consuming operands. When an instruction executes, the
hardware forwards its result to consumers and its input operands to other instructions
needing the same value. Each value is forwarded on a separate cycle, whereas HeDGE
inserts MOV instructions, and delivers all the target fields of MOV and other instructions
at once by using additional logic.

Sato et al. use a RAM-based instruction window with a register file called the Dataflow
Management Table (DMT) to keep track of dependences [21]. This scheme eliminates
associative wakeup; however, they must checkpoint the DMT on every branch prediction,
as the DMT might contain incorrect dependences after a branch misprediction. HeDGE
instead uses the misprediction handling mechanism that already exists in a superscalar
processor.

Huang et al. modify the instruction window to maintain dependence information be-
tween a producer with a single consumer within the window, and then wake up just the
consumer, avoiding a broadcast [13]. If more than one consumer enters the window, the
wakeup logic reverts to a conventional broadcast scheme. This hybrid design combines
direct instruction wakeup and broadcast, but comes with additional complexity. HeDGE
uses MOV instructions when there are multiple dependent consumers within the window.
This design adds instruction overhead compared to Huang et al., but enables the use of
RAM hardware and simplifies the instruction window design.

Reducing issue logic latency. To reduce the issue logic latency, a number of approaches
perform some form of dependence-based pre-scheduling to reduce the number of in-
structions considered for issue every clock cycle [16,17,20]. Palacharla et al. performed
an analysis of circuit delay of various structures in a superscalar processor, and showed
that the wakeup and select logic is a key element of the processor’s critical path [20].
They proposed the first dependence-based instruction window design where the issue
queue is implemented as a set of FIFOs with only the head of the FIFOs considered for
issue. Michaud and Seznec pre-schedule instructions based on dataflow order, group-
ing instructions based on the clock cycle at which they will issue, thereby reducing the
number of instructions considered for selection [17]. Lebeck et al. identify instructions
dependent on long-latency operations such as cache misses and move them to a larger
buffer [16]. They move these instructions back to the issue queue when the long latency
operation completes. The number of instructions in the issue queue is smaller, and thus
the issue queue is faster. These approaches are orthogonal to HeDGE and can coexist
with our approach.
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A taxonomy of dependence encoding. The taxonomy in Table 1 classifies Von Neu-
mann and dataflow architectures according to the way they specify dependences between
instructions in the ISA and between instructions in the issue window. Conventional out-
of-order superscalar processors like the Alpha 21264 [15] use a Reduced Instruction Set
Computer (RISC) instruction stream that encodes dependences between instructions us-
ing register names. The initial stages of the pipeline use register renaming to eliminate
write-after-read and write-after-write dependences. Read-after-write dependences be-
tween instructions within the window are specified using physical register names.

WaveScalar, TRIPS, and other dataflow machines directly encode dependences in
the ISA to exploit the inherent efficiencies of dataflow execution [7,18,24]. In a data-
flow ISA, the compiler must explicitly specify dependences between instructions using
target instruction identifiers. The execution model maps instructions to execution units
on a distributed substrate, preserving the dependence information encoded in the ISA.
In WaveScalar and TRIPS, both the ISA and microarchitecture use instruction identi-
fiers to specify dependences. HeDGE exploits some of the same efficiencies, but in the
context of a conventional ISA.

Table 1. Taxonomy of dependence encoding

Instruction Window Encoding

Register names Instruction names

ISA encoding
Register names

Alpha 21264 [15], Huang et al. [13],
Pentium Sato et al. [21], HeDGE

Instruction names
None Dataflow machines [7],

WaveScalar [24], TRIPS [18]

3 Background

This section describes a conventional superscalar pipeline, with the register renaming
and instruction wakeup, to provide context and motivation for our approach.

Figure 1 depicts the pipeline stages for dynamic instruction scheduling in an out-
of-order superscalar processor. The frontend of the processor (not shown) fetches, de-
codes, and transfers instructions to the rename stage, which keeps track of instructions
by reserving reorder buffer entries, reservation stations, and physical registers. The is-
sue stage holds instructions in reservation stations, waiting for their input operands to
become available. The select logic chooses candidates for execution, from ready in-
structions whose input operands are all available, based on availability of execution
units and other policy considerations such as age of the instruction and criticality of the
instruction [8]. Instructions selected for execution, read values from the register file and
execute on appropriate functional units.

Register renaming. The register renaming stage updates a Register Alias Table (RAT)
that maps architectural register names to physical register names. The rename stage
eliminates all write-after-write and write-after-read register dependences by mapping
the write target to a unique unused physical register location. The rename logic uses this
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Fig. 1. Superscalar pipeline stages (HeDGE modifies the shaded parts of the pipeline)
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Fig. 2. Conventional superscalar pipeline register renaming example

physical register name to satisfy any subsequent reads from the original architectural
register. Instructions speculatively issue and write to physical register storage, with the
value becoming part of the architectural state only after the instruction commits. The
wakeup logic uses physical register tags to check availability of operands that were not
ready during register renaming.

Register renaming example. Figure 2 walks through a simple code sequence, showing
the contents of the RAT and reservation station entries at each clock cycle assuming
a 1-wide pipeline. Each diagram shows the RAT indexed from R1 through R4, and
reservation stations indexed by physical register names P21 through P25. The shaded
entries indicate those written in the current clock cycle. Figure 2(b) shows the state
after renaming the Load and Mul instructions. Physical register P21 maps to R2, the
destination architectural register of the Load. Similarly, R3 maps to P22. S3, the Add
instruction enters the rename stage next. The rename logic allocates a new physical
register P23 to the output register R1. The source physical register tags respectively
contain P21 and P22, and maintain the read-after-write dependences from the Load and
Mul instructions as shown in Figure 2(c). Similarly in Figure 2(d), the Addi enters the
rename stage, and its output register R4 is mapped to P24. Its source tag P21 encodes
the dependence on S1.

Instruction wakeup. The wakeup logic is a significant source of complexity for out-of-
order superscalar processors. The issue stage uses the source physical register tags set
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Fig. 3. Breakdown of dynamic instructions based on the number of dependent instructions within
the window for instruction window sizes ranging from 64 to 512

by the rename stage to wake up dependent instructions waiting in reservation stations.
Just before an instruction finishes executing, it broadcasts its destination physical reg-
ister tag to a common result tag bus. Waiting instructions snoop this bus and notify the
select logic when all their operands are available. The select logic chooses candidate
instructions for execution based on some heuristic. The wakeup and select logic of the
instruction window is a key component in the critical path for an out-of-order super-
scalar processor [20]. The tag comparisons performed every cycle are a main source of
complexity [20] and power dissipation in the instruction window [4,9].

4 Hybrid Dataflow Graph Execution (HeDGE)

To show the potential of direct instruction communication in the instruction window,
Figure 3 shows the dynamic distribution of this communication. We measured perfor-
mance on 17 of 21 C and Fortran SPEC CPU 2000 benchmarks [22] and 7 of 11 Java
programs from the DaCapo benchmark suite (version dacapo-2006-10) [3] on which
our baseline simulator currently works. We simulated the SPEC programs using the
SimpleScalar 3.0 tool suite [5] for the Alpha ISA to simulate a 4-wide dynamically
scheduled superscalar processor with varying window sizes, and the DaCapo programs
running on JikesRVM using Dynamic SimpleScalar [14] for the PowerPC ISA. Due to
space constraints, we present geometric means and representative results. A companion
technical report presents all benchmark results [23]. The figure breaks down dynamic
instructions based on the number of dependent instructions within the window. These
results show that 94 to 96% of instructions produce a result for two or fewer consumers
in windows ranging from 64 to 512 instructions, promising an efficient alternative.

4.1 Design

We leverage this observation with an instruction window design which explicitly keeps
track of dependent instructions by adding target fields to the reservation stations. In a
HeDGE window, producer instructions explicitly encode dependent consumer instruc-
tions, like in a dataflow machine. The HeDGE design only requires changes to the
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rename and issue stages in an out-of-order pipeline. These stages are highlighted in
Figure 1. We first summarize the key components in our design and then describe each
component in detail.

When a consumer enters the instruction window, HeDGE first translates the archi-
tectural registers to physical register names, and then uses the physical name to dy-
namically identify any producers already in the window. It then adds the consumers to
the producers’ list of targets, stored in reservation stations. If the target fields are ex-
hausted, HeDGE inserts MOV instructions. The MOV instructions and their target fields
fan out values to multiple consumers when necessary. This process explicitly encodes
read-after-write register dependences between instructions. This additional complexity
in the rename stage results in simpler wakeup logic. The HeDGE wakeup logic looks
up dependent instructions in the target fields of the reservation stations and sends the
result tag only to these consumers.

Rename stage. Like in a conventional pipeline, HeDGE’s rename stage maps archi-
tectural registers to physical register names for every instruction. In addition, it looks
up an instruction’s physical register operands in the RAT. If there is no entry for an
operand, the rename stage marks the input operand as ready. Otherwise, an entry in the
RAT provides the identifier for the producer. HeDGE adds this consumer to the pro-
ducer’s list of dependent instructions. This step dynamically encodes read-after-write
dependences. Each reservation station has a small, fixed number of target fields, and
there may be more consumer instructions within the window than target fields. Instead
of stalling the pipeline [26], HeDGE introduces MOV instructions into the pipeline to
track multiple consumers. We describe and use a simple algorithm that inserts a linear
chain of MOV instructions. Although we do not evaluate it here, the renaming logic could
create a tree of MOV instructions to fanout values in parallel.

Register renaming example. This section illustrates how HeDGE renames registers
and introduces MOV instructions into the pipeline with the example from the previous
section. Figure 4 is similar to Figure 2 but shows reservation stations with target in-
struction fields instead of those for source registers.

Figure 4(b) shows the state after renaming S1 and S2. Renaming assigns physical
register P21 to R2, the destination architectural register of the Load. Similarly, it assigns
R3 to P22. Next, the Add instruction enters the rename stage. The rename stage allocates
a new physical register P23 to output register R1. For each input operand, it looks up
the producer instruction identifier in the RAT. The rename stage then adds the current
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instruction identifier to the target field of each producer. Figure 4(c) shows these updates
by shading the new RAT and reservation station entries.

When S4, the Addi instruction, enters the rename stage, its producer, S1, has only
one target field left. To accommodate more potential future consumers of S1, the rename
stage inserts a MOV instruction and puts the MOV instructions identifier in the producer’s
target field. To make the MOV instruction the new producer of R2, it changes the RAT en-
try for R2 to P24. Figure 4(d) shows this intermediate step. This process is semantically
equivalent to adding Mov R2 <- R2 at this point in the program. The MOV introduces
a bubble in the pipeline. In the next cycle, the rename logic inserts S4’s instruction
identifier in the MOV’s target field and inserts S4 in the reservation station, as shown in
Figure 4(e).

Instruction wakeup. We now describe the instruction wakeup logic. The key differ-
ence between a conventional out-of-order processor and HeDGE lies in how producer
instructions communicate availability of an operand to the wakeup logic. In HeDGE,
the wakeup logic does not snoop the result bus for matching physical register tags.
Instead, it directly notifies consumer instructions as producers complete. The wakeup
logic indexes the reservation station table by the target fields of the producer instruc-
tion, notifying each consumer that an input operand is available. The select and execute
logic in HeDGE is the same as a conventional processor; it chooses which of the ready
instructions to schedule for execution and executes them on functional units.

4.2 Speculation with HeDGE

HeDGE supports existing misspeculation recovery mechanisms in a straightforward
manner. Just like in conventional processors, branch instructions trigger a RAT check-
point. When the hardware detects a branch misprediction, it squashes instructions along
the misspredicted path. If a producer is on the misspredicted path, all its consumers must
also be on the misspredicted path, and the hardware squashes all of them. If only the
consumer in a dependent chain needs to be squashed, its producers’ target fields become
invalid. To address this problem, HeDGE stores instruction numbers (inums) together
with consumer identifiers in the target fields, and only wakes up consumer instructions
when inums match.

4.3 Design Tradoffs

This section discusses in more detail the implications of fixing the number of target
fields and the consequent insertion of MOV instructions.

The number of target fields determines the number of MOV instructions HeDGE will
insert; fewer target fields require more MOV instructions, but fewer ports and a simpler
wakeup logic. Because the issue logic cannot predict in advance whether it will need
a MOV instruction or not, each reservation station entry must have at least two target
fields, one for a consumer and one for a MOV instruction to propagate the value. A
design that does not dynamically insert MOV instructions or has a single target field must
stall the pipeline when an instruction runs out of targets. HeDGE avoids such pipeline
stalls, by reserving the last target field for MOV instructions. In the case where there is
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exactly one additional consumer, the MOV is unnecessary. However, our conservative
policy simplifies the logic for introducing MOV instructions and handling them in the
other stages of the pipeline.

The semantics of a dynamically introduced MOV instruction are the same as a MOV in-
struction of the form “MOV Ra, Ra” where Ra is the architectural register name. A MOV
instruction behaves just like any other MOV instruction within the pipeline, occupying
reservation station slots and reducing the effective size of the window. They also reduce
the effective issue and commit width of the processor. Finally, whenever a MOV instruc-
tion forwards a data value, it introduces a bubble in the pipeline. Section 5.2 quantifies
these effects.

A HeDGE design must choose a sweet spot between increasing complexity to sup-
port more targets and consequently inserting fewer MOV instructions, or inserting more
MOVs to reduce complexity.

5 Evaluation

This section describes our cycle-accurate and power-modeling simulation methodolo-
gies and results. To demonstrate the tradeoffs in the HeDGE design, we measure the
number of forwarding instructions HeDGE introduces and their effect on total perfor-
mance for a range of HeDGE configurations. We then model the power and energy char-
acteristics of the circuits in a conventional CAM instruction window and in a HeDGE
RAM instruction window structures using CACTI 4.2 [25]. We use prior research that
specifies 7 to 20% of total energy consumption of a superscalar processor is due to the
dynamic scheduling structures [4,10,11]. Over this range of values, we compare total
power and energy-delay of HeDGE to a conventional design. We show that even with
a conservative 10% contribution of the issue logic to total processor power, HeDGE
configurations reduce total energy by an average of 6% for SPEC programs and 10%
for DaCapo programs.

5.1 Methodology

We extend sim-outorder, a cycle-accurate simulator from the SimpleScalar 3.0 tool
suite [5] for the Alpha ISA to implement HeDGE, for executing C and Fortran pro-
grams. We use Dynamic Simplescalar [14] for the PowerPC ISA for simulating Java
programs running on JikesRVM [2]. The cycle-level simulator models an aggressive
4-way out-of-order superscalar microarchitecture. The simulator is execution-driven
and accounts for instructions along the wrong path of a misspeculation. The mem-
ory hierarchy has two levels of caches with split L1 instruction and data caches and
a unified L2 cache. HeDGE modifies the register renaming and wakeup logic to track a
parent instruction’s targets. We explore configurations with two, three, and four target
fields in the reservation stations. Table 2 contains the simulation parameters, latencies,
and branch predictor information.

We evaluate HeDGE on all the programs that successfully execute on our baseline
simulators. We execute 17 of the 21 C and Fortran SPEC CPU2000 benchmarks [22].
We compiled all the SPEC benchmarks with Compaq’s GEM compiler with full opti-
mization for an Alpha 21264 machine. We used SimPoint 3.0 [12] to identify regions



HeDGE: Hybrid Dataflow Graph Execution in the Issue Logic 317

Table 2. Processor parameters

Parameter Value

Pipeline width 4

Instruction window/ 64/32, 128/64, 256/128, 512/256
LSQ sizes

Branch Predictor GSHARE with an 8-bit global history, and an 8K BTB

Branch Target Buffer 512 entries, 4-way associativity

Functional units four integer ALUs, one integer MULT/DIV,
two load/stores, four FP adders, one FP MULT/DIV

Latencies 1-cycle integer operations, 3-cycle multiply
2-cycle FP add, 4-cycle multiply
20-cycle integer divide (non-pipelined)
12-cycle FP divide (non-pipelined)

Split L1 I/D caches 64 KB, 2-way set associative, 64 byte lines, 1 cycle hit latency

Unified L2 cache 1 MB, 64 4-way set associative, 64 byte lines, 10 cycle hit latency

DRAM 100-cycle latency, bandwidth of 8 bytes per CPU cycle

HeDGE target fields 2, 3, and 4

of execution that characterize program behavior for a particular input set and simulated
these regions. We evaluate seven Java programs from the DaCapo benchmark suite
(version dacapo-2006-10) [3]. These programs executed 1 billion instructions after
forwarding the initialization portion of the execution. In the following discussion, we
present results for a subset of programs by including the geometric mean, high and
low extremes, and representative samples in each of SPEC INT, SPEC FP, and DaCapo
benchmark suites. We refer the reader to a technical report [23] for complete results.

5.2 Performance of HeDGE

This section quantifies the additional MOV instructions that HeDGE inserts, their effect
on performance, and the contributions due to MOV instructions occupying window slots
and pipeline bandwidth.

HeDGE introduces MOV instructions into the dynamic instruction stream to maintain
register dependences when a parent instruction runs out of target entries. These MOV
instructions behave like regular instructions, and occupy instruction window space and
issue and commit bandwidth in the pipeline. Figure 5 plots the percentage of MOV in-
structions that HeDGE adds to communicate dependences for window sizes of 64 to
512 with two, three, four target fields in the reservation stations. We include MOVs along
misspeculated paths as well, and compute them as a percentage of the total number of
committed instructions.

As expected, the number of MOVs added decreases as the number of target fields in-
creases. On average, two targets increase executed instructions by 20 to 30%, whereas
four targets only increase executed instructions by 2 to 4% (the white portion in the
final set of bars). In addition, increasing the instruction window size from 64 to 512
increases the number of MOVs. These MOV instructions cause a corresponding drop in
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Fig. 6. Increase in execution time for HeDGE over the baseline processor
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Fig. 7. Instruction window slots and pipeline bandwidth contributions of HeDGE MOVs. The first
column shows the performance of HeDGE relative to the baseline, the second column shows
HeDGE if MOVs do not occupy instruction window slots, and the third column shows MOVs not
consuming pipeline bandwidth.

performance as shown in Figure 6. These plots compare the performance in simulated
cycle counts of HeDGE over the baseline configuration. Cycle counts are a more appro-
priate comparison point than Instructions Per Cycle (IPC) in this work because HeDGE
adds additional instructions. For a HeDGE implementation with only two targets, execu-
tion time increases by 17%. This number falls to 6.5% for a HeDGE implementation with
three targets, and to less than 3.4% for four targets. The increase in execution time for
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the DaCapo programs is even smaller, ranging from 8% with two targets, to 1.5% with
four target fields. Although these results suggest using four targets rather than two in
the reservation stations, four targets require four ports and parallel logic to wakeup four
instructions at once. This increased complexity thus favors a lower numbers of targets,
but performance favors more targets.

We now further quantify three effects of MOV instructions: (1) They occupy instruc-
tion window entries and reducing the effective size of the instruction window. (2) They
utilize issue and commit bandwidth, which reduces the effective width of the pipeline.
(3) They occupy execution units, conceptually introducing bubbles in the pipeline. To
measure the first effect, we assign MOVs to their own window, thereby using the entire
instruction window for other instructions. To measure the second effect, we model sep-
arate, special issue logic that only executes MOV instructions. Figure 7 plots increases
in execution time over a baseline configuration with a moderately aggressive instruc-
tion window size of 128, for the SPEC and DaCapo benchmarks. The three columns
in the figures show HeDGE, HeDGE when MOV instructions do not occupy instruction
window slots, and HeDGE when MOV instructions do not consume pipeline width.

These results show that for both SPEC and DaCapo programs, MOV instructions oc-
cupying pipeline bandwidth is the main reason for HeDGE performance degradations;
i.e., the third bar in which MOVs do not occupy execution is on average much lower
than the other two. A few counterintuitive performance degradations occur when MOV
instructions do not occupy instruction window slots, e.g., the second bar is higher than
HeDGE for 168.wupwise (and 171.swim and 172.mgrid, not shown in the graphs).
When MOV instructions reside in their own buffers, the effective window size for reg-
ular instructions increases and there are now more instructions in the window. As a
result, HeDGE must add more MOV instructions to the pipeline, which utilize pipeline
bandwidth and cause a drop in performance.

To execute a fanout instruction, the processor does not need Arithmetic Logic Units
(ALUs) or commit width. Since the only purpose of MOV instructions is to wake up
dependent instructions, the issue logic could include an additional bypass path that im-
plements the MOV instructions, waking up dependent consumers.

5.3 Energy Characteristics

We used CACTI 4.2 to model the power and energy characteristics of a conventional
CAM-based instruction window and a RAM-based HeDGE design. We use CAM en-
tries with 64 decoded instruction bits and four ports—to support broadcasting up to
four physical register tags every cycle. The HeDGE RAMs window adds two to four
target fields to every instruction. For a 4-issue processor, the RAM requires four read
ports, but eight write ports. Since each instruction has at most two operands, HeDGE
needs two write ports to install the target fields in each operand producer for each issued
instruction. Given two to four target fields, HeDGE uses eight to sixteen one-bit write
ports to set the ready bits of consumer instructions. The number of ports is equal to the
number of target fields in the reservation station times the issue width which indicates
the maximum number of instructions HeDGE can wakeup in a single cycle.

Table 3 shows the energy consumed per access and leakage power, for 100, 70, and
45 nm technology nodes. CACTI does not currently provide leakage power for 45nm



320 S. Subramanian and K.S. McKinley

technology. Although, the HeDGE RAM structure occupies more area than the CAM
because it has more ports, the HeDGE RAM consumes 94 to 98% less energy per access
than the CAM design. These results show that the CAM leaks 72 to 87% more power
than the HeDGE RAM. For the HeDGE RAM, leakage power increases as a function
of target fields because each field requires additional transistors.

Table 3. Energy per access (nJ)

IW Size
Energy per access (nJ) Leakage power (mW)

Baseline
HeDGE

Baseline
HeDGE

2 3 4 2 3 4
100 nm technology

64 0.336 0.016 0.014 0.020 14.619 1.965 2.578 2.472
128 0.524 0.019 0.020 0.029 21.703 4.142 4.489 4.530
256 0.932 0.026 0.027 0.030 42.582 7.796 8.501 10.824
512 1.748 0.036 0.038 0.041 84.340 15.823 17.237 21.890

70 nm technology
64 0.149 0.007 0.007 0.009 60.959 9.339 10.184 11.630
128 0.227 0.008 0.009 0.013 82.736 19.313 21.010 21.727
256 0.403 0.011 0.012 0.017 162.874 37.107 40.540 43.352
512 0.756 0.017 0.018 0.021 323.149 71.437 78.303 89.341

45 nm technology
64 0.058 0.002 0.003 0.004
128 0.091 0.003 0.003 0.005 Leakage power numbers
256 0.161 0.004 0.004 0.005 not available
512 0.303 0.006 0.006 0.007

We now compare the overall power and energy-delay product of HeDGE against
the baseline design. We use energy consumption data obtained from CACTI for the
individual structures. We do not include leakage power when computing total energy-
delay because how to estimate its contribution to total power is still an open research
problem. We rely on prior results for the relative contribution of the instruction window
to overall processor power [4,10,11].

Let eBaseline and eHeDGE respectively be the energy consumed each clock cycle
by the baseline design and HeDGE. Let eBaseline,scheduler and eHeDGE,scheduler re-
spectively be the energy consumed each clock cycle for each structure. Let f be the
contribution of dynamic scheduling towards the overall power consumption in the base-
line design. Following Amdahl’s law, we obtain eBaseline = eBaseline,scheduler/f
and eHeDGE = eHeDGE,scheduler + (1 − f)eBaseline. The total energy (E) con-
sumed while executing a program, by the baseline and HeDGE designs, are related by
EBaseline/EHeDGE = (eBaseline.CyclesBaseline)/(eHeDGE .CyclesHeDGE). This
ratio is independent of clock frequency, and assumes that the baseline and HeDGE
clocks run at the same frequency. We do not take into account that HeDGE structures
have a faster access time and hence could be clocked faster.

For 70nm technology, a conservative 10% contribution of the issue logic to total
power, and a 512-entry instruction window, Figure 8 plots the relative energy-delay for
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Fig. 8. Energy ratio of HeDGE to the baseline with a 512 instruction window
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Fig. 9. Energy ratio as a function of the issue
logic’s total contribution to power
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Fig. 10. Energy-delay ratio as a function of
the issue logic’s total contribution to power

HeDGE designs with two, three, and four target fields compared to the baseline su-
perscalar processor design for all benchmarks. Figures 9 and 10 show the energy and
energy-delay as a function of the contribution of the issue logic to total power for ranges
from 5 to 20%. Each figure plots the geometric mean of all the benchmarks for 512-
entry instruction windows with two, three, and four target fields for 70nm technology.
These graphs show that even if a CAM-based processors consumes only 5% of total
energy, a four-entry HeDGE RAM improves total energy and energy-delay. If current
CAM-based designs are consuming 20% of total power, HeDGE offers significant ad-
vantages even with only two target fields.

6 Conclusion

Prior work has shown that the central CAM structure in the issue logic scales poorly with
respect to power and latency, and that the issue logic is an integral component of the crit-
ical path in superscalar processors. We present HeDGE, a new, more scalable design for
the instruction issue logic. HeDGE dynamically transforms instruction dependences im-
plicitly encoded in the register names from a conventional ISA into explicit dependences
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by adding target fields to the reservation stations and MOV instructions to the instruction
stream. HeDGE modifies only the issue, register renaming, and wakeup logic. The main
advantage of this design is that it naturally leads to the use of a RAM as the central
structure in the issue logic instead of a CAM. We show that even without quantifying
the cycle advantages RAMs offer, HeDGE offers substantial power improvements for
the issue logic. Furthermore, these results translate to improvements in total processor
power, energy, and energy-delay.
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