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Motivation

Software applications change all the time

Deployed systems must be updated with bug fixes, new features

Updating typically involves: stop, apply patch, restart

Not desirable

Safety concerns
Revenue loss
Inconvenience
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Dynamic updating systems

Special-purpose architectures, application-specific solutions exist

General-purpose solutions gaining strength

K42, Ksplice for OS updates
Polus, Ginseng for C applications

Not for managed languages
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Our solution

Jvolve - a Java Virtual Machine with DSU support

Key insight: Extend existing VM services

No DSU-related overhead during normal execution

Support updates to real world applications

Dynamic software updating in managed languages can be achieved in
a safe, flexible and efficient manner by naturally extending existing
VM services.

DSU support should be a standard feature of future VMs.
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Jvolve - System overview
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Supported updates

Changes within the body of a method

public static void main(String args[]) {
System.out.println("Hello, World.");

+ System.out.println("Hello again, World.");
}

Class signature updates

Add, remove, change the type signature of fields and methods

public class Line {
- private final Point2D p1;
+ private final Point3D p1;

...
}

Signature updates require an object transformer function
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Check for update safety
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Safe point for the update

Update must be atomic

Updates happen at “safe points”

Safe points are VM yield points, and restrict what methods can
be on stack

Extend the thread scheduler to suspend all application threads

If any stack has a restricted method, delay the update
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Restricted methods

(1) Methods changed by the update

(2) Methods identified by the user as unsafe based on semantic
information about the application

Install return barriers that trigger DSU upon unsafe method’s return

(3) Methods whose bytecode is unchanged, but compiled
representation is changed by the update

Offsets of fields and methods hard-coded in machine code
Inlined callees may have changed

Utilize on-stack replacement to recompile base-compiled methods
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Reaching a safe point
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Update code
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Update code

Modify class loader to recognize new versions of classes

Install new versions of classes and methods

Rely on Just-in-time Compiler to compile new versions of
methods on demand

Extend On-stack replacement to update active methods
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Update data
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Example of an update (JavaEmailServer)

public class User {
private final String username, domain, password;

- private String[] forwardAddresses;
+ private EmailAddress[] forwardAddresses;

public User(...) {...}
public String[] getForwardedAddresses() {...}

public void setForwardedAddresses(String[] f) {...}

}

public class ConfigurationManager {
private User loadUser(...) {

...
User user = new User(...);
String[] f = ...;

user.setForwardedAddresses(f);
return user;

}
}
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Example of an update (JavaEmailServer)

public class v131_User {
private final String username, domain, password;
private String[] forwardAddresses;

}
public class JvolveTransformers {
...
public static void jvolveClass(User unused) {}
public static void jvolveObject(User to, v131_User from) {

to.username = from.username;
to.domain = from.domain;
to.password = from.password;
// to.forwardAddresses = null;
int len = from.forwardAddresses.length;
to.forwardAddresses = new EmailAddress[len];
for (int i = 0; i < len; i++) {
to.forwardAddresses[i] =

new EmailAddress(from.forwardAddresses[i]);
}}}
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Transforming objects in the GC

a b c
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After

Happens in two steps
Garbage collector creates an additional empty copy for updated
objects

Walk through and transform all these objects
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Jvolve GC
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Application Experience

Jetty webserver

11 versions, 5.1.0 through 5.1.10, 1.5 years
45 KLOC

JavaEmailServer

10 versions, 1.2.1 through 1.4, 2 years
4 KLOC

CrossFTP server

4 versions, 1.05 through 1.08, more than a year
18 KLOC
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What works

Support 20 of 22 updates

13 updates change class signature by adding new fields

Several updates require On-stack replacement support

Two versions update an infinite loop, postponing the update
indefinitely
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Jvolve performance

No overhead during steady-state execution
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Conclusion

Jvolve, a Java VM with support for Dynamic Software
Updating

Most-featured, best-performing DSU system for Java

Naturally extends existing VM services

Supports about two years worth of updates

Dynamic software updating in managed languages can be achieved in
a safe, flexible and efficient manner.

Source code and other information:
http://www.cs.utexas.edu/~suriya/jvolve
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