
Copyright

by

Suriya Subramanian

2010

The Dissertation Committee for Suriya Subramanian
certifies that this is the approved version of the following dissertation:

Dynamic Software Updates: A VM-Centric Approach

Committee:

Kathryn S. McKinley, Supervisor

Steve Blackburn

Michael Hicks

Calvin Lin

Keshav Pingali

Dynamic Software Updates: A VM-Centric Approach

by

Suriya Subramanian, B.E., M.S.C.S

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2010

To Amma, Appa, and Shriram.

Acknowledgments

I am deeply grateful to my advisor Kathryn McKinley for guiding me

through grad school with utmost interest and dedication. She was flexible

enough to let me do what I wanted, even if it was outside her area. In the

days before my first paper submission, she gave me undivided attention and

worked through the night until we submitted the paper. At times it seemed

like she cared more about my success and well-being than I did myself. I

wouldn’t have gotten this far without her unflinching positive attitude and

encouragement. As I leave grad school, inspired by Kathryn as a researcher

and a human being, I will strive to always give my best to those around me.

Over the past three years, Michael Hicks’ meticulous attitude towards

research has been a positive influence. Always prompt to reply to e-mails, he

invariably shot down most of my arguments and imparted some of his vast

knowledge in the field of dynamic software updating. I thank him for all his

advice and for introducing us to scrum for research [41].

Steve Blackburn has always been eager to offer technical advice and

guidance. I thank Steve, Keshav Pingali, and Calvin Lin for their insightful

questions and helpful feedback.

My research has benefitted enormously from my interactions with Mike

Bond. I thank him for brainstorming engaging research problems as well as

for patiently answering technical questions. For their personal and technical

support, I thank members of the Speedway research group: Jenn Sartor, Bert

Maher, Byeongcheol Lee, Katie Coons, Dimitrios Prountzos, Ivan Jibaja, Alex

v

Loh, and Na Meng.

This research would not have been possible without JikesRVM. I thank

JikesRVM’s developers for maintaining an excellent research infrastructure,

and the community, especially Dave Grove and Filip Pizlo, for helpful advice.

I am thankful to Gem Naivar, Tom Horn, Lydia Griffith, and Gloria

Ramirez for all their guidance and help. My thanks are also due to UT and

NSF for directly and indirectly funding my research.

Among my friends, I am indebted to Smriti for her patient listening

in times good and bad, and my roommates, Sibi and Ramtilak, for all their

support. I thank Smita, Urmila, and other volunteers of Vibha for all the

good times and Vishaal, Harish, and Rohan for numerous music sessions that

helped keep me sane. My time in Austin was made memorable by several nice

folks. I thank them all.

I wouldn’t have reached here without my family. My parents Swarnam

and Subramanian showered me with love and affection, gave me a great ed-

ucation, and instilled in me the importance of sincerity and hard work. My

brother Shriram has been my best cheerleader. To my family, I dedicate this

dissertation.

vi

Dynamic Software Updates: A VM-Centric Approach

Publication No.

Suriya Subramanian, Ph.D.

The University of Texas at Austin, 2010

Supervisor: Kathryn S. McKinley

Because software systems are imperfect, developers are forced to fix bugs and

add new features. The common way of applying changes to a running system

is to stop the application or machine and restart with the new version. Stop-

ping and restarting causes a disruption in service that is at best inconvenient

and at worst causes revenue loss and compromises safety. Dynamic software

updating (DSU) addresses these problems by updating programs while they

execute. Prior DSU systems for managed languages like Java and C# lack

necessary functionality: they are inefficient and do not support updates that

occur commonly in practice.

This dissertation presents the design and implementation of Jvolve,

a DSU system for Java. Jvolve’s combination of flexibility, safety, and effi-

ciency is a significant advance over prior approaches. Our key contribution is

the extension and integration of existing Virtual Machine services with safe,

flexible, and efficient dynamic updating functionality. Our approach is flex-

ible enough to support a large class of updates, guarantees type-safety, and

imposes no space or time overheads on steady-state execution.

vii

Jvolve supports many common updates. Users can add, delete, and

change existing classes. Changes may add or remove fields and methods, re-

place existing ones, and change type signatures. Changes may occur at any

level of the class hierarchy. To initialize new fields and update existing ones,

Jvolve applies class and object transformer functions, the former for static

fields and the latter for object instance fields. These features cover many up-

dates seen in practice. Jvolve supports 20 of 22 updates to three open-source

programs—Jetty web server, JavaEmailServer, and CrossFTP server—based

on actual releases occurring over a one to two year period. This support is

substantially more flexible than prior systems.

Jvolve is safe. It relies on bytecode verification to statically type-

check updated classes. To avoid dynamic type errors due to the timing of an

update, Jvolve stops the executing threads at a DSU safe point and then

applies the update. DSU safe points are a subset of VM safe points, where it

is safe to perform garbage collection and thread scheduling. DSU safe points

further restrict the methods that may be on each thread’s stack, depending on

the update. Restricted methods include updated methods for code consistency

and safety, and user-specified methods for semantic safety. Jvolve installs

return barriers and uses on-stack replacement to speed up reaching a safe point

when necessary. While Jvolve does not guarantee that it will reach a DSU

safe point, in our multithreaded benchmarks it almost always does.

Jvolve includes a tool that automatically generates default object

transformers which initialize new and changed fields to default values and

retain values of unchanged fields in heap objects. If needed, programmers

may customize the default transformers. Jvolve is the first dynamic updat-

ing system to extend the garbage collector to identify and transform all object

viii

instances of updated types. This dissertation introduces the concept of object-

specific state transformers to repair application heap state for certain classes

of bugs that corrupt part of the heap, and a novel methodology that employes

dynamic analysis to automatically generate these transformers. Jvolve’s ea-

ger object transformation design and implementation supports the widest class

of updates to date.

Finally, Jvolve is efficient. It imposes no overhead during steady-

state execution. During an update, it imposes overheads to classloading and

garbage collection. After an update, the adaptive compilation system will in-

crementally optimize the updated code in its usual fashion. Jvolve is the first

full-featured dynamic updating system that imposes no steady-state overhead.

In summary, Jvolve is the most-featured, most flexible, safest, and

best-performing dynamic updating system for Java and marks a significant

step towards practical support for dynamic updates in managed language vir-

tual machines.

ix

Table of Contents

Acknowledgments v

Abstract vii

List of Tables xiii

List of Figures xiv

Chapter 1. Introduction 1

Chapter 2. Background 10

2.1 Updating Code . 10

2.2 Updating data . 12

2.2.1 Implementation mechanisms 13

2.2.2 Semantics of state transformers 14

2.3 Safety of updates . 16

2.3.1 Assuring safety by testing 21

2.4 Update Timing . 22

2.4.1 Updates to active methods 23

2.4.2 Multithreaded applications 25

2.5 Conclusion . 26

Chapter 3. Jvolve System 27

3.1 Introduction . 27

3.2 Supported Changes . 29

3.3 VM object model and method dispatch 33

3.4 Jvolve’s view of updates . 35

3.4.1 Class and Object Transformers 36

3.5 Implementation . 41

x

3.5.1 Preparing the update 41

3.5.2 DSU safe points . 42

3.5.3 On-Stack Replacement to lift category (2) restrictions . 47

3.5.4 Installing modified classes 50

3.5.5 Applying Transformers 53

3.6 Conclusion . 61

Chapter 4. State Transformers: Models and Automation 62

4.1 Object Transformation Model 62

4.1.1 Eager transformation models 63

4.1.2 Discussion . 72

4.1.3 Lazy transformation model 73

4.2 Repairing Application State 75

4.2.1 Memory leaks in Java 77

4.2.2 Fixing corrupt heap state for leaks 79

4.3 Automating State Transformer Generation 84

4.3.1 Invariants discovered from real fixes 88

4.4 Conclusion . 89

Chapter 5. Evaluation 91

5.1 Performance . 92

5.1.1 Jetty Webserver performance 93

5.1.2 Microbenchmark performance 95

5.2 Applications . 98

5.2.1 Jetty webserver . 98

5.2.1.1 State transformer functions in Jetty 101

5.2.1.2 Reaching a safe point in Jetty 104

5.2.2 JavaEmailServer . 108

5.2.2.1 Updates to JavaEmailServer 109

5.2.3 CrossFTP server . 111

5.2.3.1 Updates to CrossFTP 113

5.3 Conclusion . 114

xi

Chapter 6. Related Work 115

6.1 Dynamic Software Updating for C/C++ 115

6.1.1 K42 Operating System 116

6.1.2 Ksplice . 117

6.1.3 Ginseng . 117

6.1.4 Upstare . 118

6.2 Dynamic Software Updating for managed languages 119

6.2.1 Edit and continue development 120

6.2.2 Solutions without VM-support 120

6.2.3 VM support for DSU in managed languages 122

6.2.4 Dynamic ML . 123

6.2.5 Language support for Dynamic Software Updating (DSU) 123

6.3 Updates in a persistent object store 124

6.4 Summary . 125

Chapter 7. Conclusion 128

Bibliography 129

Vita 142

xii

List of Tables

4.1 Memory leak fixes to real applications 78

5.1 Microbenchmark results: Jvolve update pause time (in ms)
for various heap sizes . 96

5.2 Summary of updates to Jetty 99

5.3 Impact of safe point restrictions on updates to Jetty 105

5.4 Summary of updates to JavaEmailServer 108

5.5 Summary of updates to CrossFTP server 111

6.1 Comparison of DSU systems 126

xiii

List of Figures

2.1 Simple function illustrating con-freeness safety 19

2.2 Simple transaction region marked by the programmer 20

3.1 Overview of the Dynamic Updating process. 28

3.2 Examples of an update that changes class signature 30

3.3 Changes to JavaEmailServer User and ConfigurationManager
classes from version 1.3.1 to version 1.3.2 31

3.4 Simple example of method and field accesses to illustrate how
inheritance is implemented in Java 34

3.5 Example of a simple class and the default object transformer . 37

3.6 User object transformer for update from JavaEmailServer ver-
sion 1.3.1 to version 1.3.2 . 38

3.7 Example of JikesRVM’s On-Stack Replacement (OSR) mecha-
nism [35] . 48

3.8 JikesRVM meta-data schema for each class 50

3.9 JikesRVM meta-data showing the old class name pointing to a
newer class after an update 51

3.10 Semi-space copying collector pseudo-code 54

3.11 Jvolve’s modification to JikesRVM’s semi-space copying col-
lector . 56

3.12 A view of the to semi-space immediately after garbage collection 56

3.13 Running object transformers following garbage collection . . . 58

3.14 A look at the structure of an example linked list before and
after the update . 59

3.15 An update that goes from a singly-linked to a doubly-linked list 60

4.1 Example of a simple update where the field of an updated class
refers to another updated class 65

4.2 Stub classes and transformers for the update in Figure 4.1 . . 66

4.3 Old World Model: A view of the linked lists, before and after
running transformation functions 67

xiv

4.4 Old World Model: Object Transformers to convert a singly-
linked list into a doubly-linked list 68

4.5 New World Model: A view of the linked lists, before and after
running transformation functions 69

4.6 New World Model: Object Transformers to convert a singly-
linked list into a doubly-linked list 70

4.7 Lazy object transformation model implementation 74

4.8 Examples of “memory leaks” in Java 76

4.9 jEdit leak and fix: SVN revision 8329 80

4.10 jEdit update: SVN revision 14027 81

4.11 Eclipse IDE memory leak patch: Bug #115789 82

4.12 State transformer that fixes Eclipse IDE memory leak bug #11-
5789 . 83

4.13 Example of a simple patch that fixes a memory leak 85

5.1 Throughput and latency measurements for Jetty webserver ver-
sion 5.1.6 showing median and semi-interquartile range 93

5.2 Microbenchmark pause times with a heap size of 1280 MB con-
taining 3.67 million objects . 97

5.3 Jetty webserver code: High level organization 100

5.4 UPT-generated transformers for the update to Jetty v5.1.2 . . 102

5.5 Object transformer from Jetty version 5.1.5 to 5.1.6 103

5.6 JavaEmailServer code: High level organization 110

5.7 CrossFTP code: High level organization 112

xv

Chapter 1

Introduction

Evolving software is a fact of life. Developers constantly fix bugs and

add new features to software. These software changes make their way to

deployed systems. However, many systems ranging from medical equipment

to communication and transportation systems to financial systems, must be

always available. For online stores, brokerages, and exchanges an hour of

downtime can mean significant revenue loss running into thousands or even

millions of dollars [73, 66, 30, 69]. Mission critical applications such as satellites

cannot tolerate downtime [18]. When it comes to end-user applications and

operating systems, downtime is both expensive and inconvenient [92]. In spite

of these concerns, the most common update method used today is to stop

a running system, install an update, and restart with the new version. In

one study of nearly 6,000 outages of high-availability applications, 75% were

for planned hardware and software maintenance [49]. Another study of the IT

industry finds 80% of all downtime to have been planned, and 15% of downtime

is attributed to software updates [85]. Moreover, security issues force system

administrators to patch their systems ever more frequently [11]. With Internet

access being ubiquitous, and application and OS vulnerabilities in unpatched

systems being exploited more and more, delaying updates poses real security

risks [3, 5, 44].

As a solution to these problems, researchers have proposed Dynamic

1

Software Updating (DSU). DSU is a general-purpose approach to updating

running programs. DSU dynamically patches a program running an old version

of an application, updating running code and data to a state consistent with

a newer version. DSU’s appeal is that it can be applied generally without the

need for redundant hardware or explicit special-purpose system designs [74].

An ideal general-purpose DSU system should be flexible, safe, and efficient

[40, 60].

Flexible. A DSU system should be flexible enough to handle the type of

changes developers typically make between versions. While it is not

possible to handle every possible software update, DSU desires to support

most software version changes encountered in practice.

Safe. Dynamically updating to the new version should be as safe as starting

the new version from scratch. The system should guarantee to developers

and users that the update process does not introduce type or process

state errors, and that the updated version executes as intended.

Efficient. DSU should provide an efficient upgrade process and efficient nor-

mal execution. DSU support should add no performance overhead over

normal application execution, and the update process itself should be

quick. Preparing the patch and testing the update itself requires addi-

tional development effort, but this effort should be minimal.

Researchers have made significant strides toward making DSU practical

for systems written in C or C++, supporting server feature upgrades [64, 21,

51], security patches [3], and operating systems upgrades [75, 8, 9, 10, 52, 20, 5].

Unfortunately, work on DSU for managed languages such as Java, C#, Python

2

and Ruby lags behind work for C and C++. However, the use of Java and other

dynamic languages is increasingly common, powering systems both small and

large [34, 55, 54, 70, 24]. Websites and web-services are increasingly written

in dynamic languages such as Python and Ruby. Java powers both large

complex systems running stock exchanges and millions of small cell phones

and other handheld devices. Even safety-critical applications such as those

that control aircraft originally written in Ada, are migrating to Java. Dynamic

updating support for managed languages has lagged behind pervasive use of

these languages. For example, while the HotSpot JVM [81] and some .NET

languages [56] support on-the-fly method body updates, this support is too

inflexible for all but the simplest updates [78]. Academic approaches [72, 53,

67, 13] offer more flexibility, but have never been demonstrated on realistic

applications, and furthermore, these prior designs impose substantial space

and time overheads on steady-state execution.

In this dissertation, we present Jvolve, a Java Virtual Machine (JVM)

that provides general-purpose dynamic updating of Java applications. Jvol-

ve’s combination of flexibility, safety, and efficiency is a major advance over

prior approaches. Our key contribution is to show how to extend and integrate

existing Virtual Machine (VM) services to support dynamic updating that is

flexible enough to support the largest class of updates to date, guarantees type-

safety, and imposes no space or time overheads on steady-state execution.

Flexibility. A practical DSU system must support changes to software that

developers typically make between versions. Prior studies on C applications

[61], the Linux kernel [68] and Java applications [25] show that changes can

usually be categorized into addition of new methods and types, modification of

3

method definitions, and changes to the type signatures of methods and data

fields. Jvolve supports these and other common updates. Users can add,

delete, and change existing classes. Changes may add or remove fields and

methods, replace existing ones, and change type signatures. Changes may

occur at any level of the class hierarchy. Changes can alter data structures,

e.g., replace a list with a hash map. As a testament to its flexibility, our

experience shows that Jvolve supports 20 of 22 updates to three open-source

programs—Jetty web server, JavaEmailServer, and CrossFTP server—based

on actual releases occurring over 1 to 2 years.

Overview of Jvolve’s approach. Jvolve consists of 1) an offline sou-

rce analysis tool called the Update Preparation Tool (UPT) that uses jClasslib

Java Bytecode Viewer library, and 2) a JVM with DSU support built on top of

JikesRVM, a research VM. UPT identifies differences between source versions

and generates an update specification that includes class and object trans-

former functions that specify logic to update application data from the old

to the new version. The Jvolve VM takes in this specification and performs

the update. Upon being notified that an update is available, Jvolve pauses

the application, performs the update atomically in a single step, and resumes

application execution of the updated version. Only old code runs before the

update and only new code runs after the update. Application data stored in

globals, locals, and the heap always corresponds to the newest version of the

application, a property called representation consistency. To maintain repre-

sentation consistency Jvolve suspends the running program at a DSU safe

point and converts all object instances to conform to the newest version before

it restarts the application.

4

Update Safety. Jvolve relies on Java’s semantics to ensure that the old

and new application versions are independently consistent and type-safe. Jvo-

lve ensures a type-safe update process by allowing only unchanged methods

to be active on stack when performing the update [77, 64, 8]. Jvolve relies

on the developer and testing process to specify other methods that should

not be executing during an update in order to maintain correct application

semantics with the new version [37, 63]. For example, consider a method foo

that makes two consecutive methods invocations to bar and baz, and requires

for correctness that both calls are of the same version. If both methods are

updated, the developer should not allow an update when foo is active, to

prevent an update in between calls to bar and baz.

To process an update, Jvolve pauses execution at a DSU safe point.

DSU safe points are a subset of VM safe points where it is safe to switch

application threads and perform Garbage Collection (GC). DSU safe points

have the aforementioned restrictions on what methods can be active on stack

to guarantee a safe update. In situations where restricted methods are active

on stack, Jvolve installs return barriers [90] on these methods that inform

the VM that an unsafe method has returned and that it may now be safe to

perform an update. Jvolve’s use of return barriers increases the likelihood of

an application reaching a DSU safe point, but does not guarantee reaching one

in multithreaded programs [62]. Jvolve utilizes OSR to recompile restricted

methods with unchanged method bodies that are active on stack. In this case,

Jvolve promptly performs the update. In our experience, if a safe point can

ever be reached, Jvolve’s support is sufficient to reach it.

Updating code. Jvolve makes use of Just-in-time (JIT) compilation to

5

efficiently update the code. Jvolve invalidates existing compiled code and

installs new bytecode for all changed method implementations. When the

application resumes execution these methods are JIT-compiled when they are

next invoked. The adaptive compilation system naturally optimizes updated

methods further if they execute frequently.

Updating data. To update live object instances of changed classes, Jvol-

ve makes use of Garbage Collection (GC), and is the first dynamic updating

system to do so. Jvolve initiates a whole-heap GC, which identifies existing

object instances of updated classes. As the last phase of GC, Jvolve initial-

izes and transforms all updated objects to their new versions using default or

user provided object transformers for each updated type. Because Jvolve

identifies all objects it will update before actually invoking object transform-

ers, the system can control the order in which objects are transformed. To our

knowledge, Jvolve is the only system with this functionality. In the current

implementation, Jvolve relies on the developer to specify the required order.

In Jvolve’s natural and intuitive object transformation model, the

transformer function receives two objects: an object of the old type corre-

sponding to the state before the update, and an object of the new type corre-

sponding to the state after the update. For global variables, Jvolve invokes

class transformers where the programmer has access to any object reachable

from global variables, i.e., static fields of classes. The UPT generates default

object and class transformers that are simple, and the developer can write a

more sophisticated function if required.

6

Specializing and automating transformers. In this dissertation, we also

explore state transformers with logic that depends on the state of the object

being transformed, rather than only performing a uniform action for all ob-

jects. We use such transformers to repair erroneous application state that

results from executing a buggy program version. As part of the update, the

dynamic updating system runs state transformers on a subset of objects with

corrupted state. We use these transformers to fix memory leaks in real appli-

cations. In this dissertation we also present a methodology that starts with

a bugfix and instruments the application to mark objects that would be cor-

rupted in a run of the old version of the program. We then perform a novel

dynamic analysis that infers a predicate that distinguishes between marked

and unmarked objects in the application and automatically generates object

transformers that repair the state of objects identified by the predicate. We

are the first to consider systematic, accurate repair of buggy application state

during dynamic updating.

Efficiency. Jvolve imposes no overhead on steady-state execution. Dur-

ing an update, Jvolve employs classloading and garbage collection. After

an update, the adaptive compilation system will incrementally optimize the

updated code in its usual fashion. Eventually, the code is fully optimized

and running with no additional overhead. The zero overhead in steady-state

execution for a VM-based approach is in contrast to DSU techniques for C,

C++, and previous proposals for managed languages. These prior approaches

use a compiler or dynamic rewriter to insert levels of indirection [64, 67] or

trampolines [20, 21, 3, 5], which add overhead during normal execution.

We assessed Jvolve by applying it to updates corresponding to one

7

to two years’ worth of releases for three open-source multithreaded applica-

tions: Jetty web server, JavaEmailServer (an SMTP and POP server), and

CrossFTP server. Jvolve successfully applies 20 of the 22 updates—the two

updates it does not support change a method within an infinite loop that is

always on the stack. Microbenchmark results show that the pause time due

to an update depends on the size of the heap and fraction of transformed

objects. Experiments with Jetty show that applications updated by Jvolve

execute correctly and enjoy the same steady-state performance as if started

from scratch.

In summary, the main contributions of this dissertation are:

1. New techniques that extend and integrate standard virtual machine ser-

vices for managed languages to support a flexible, safe, and efficient

dynamic software updating service.

2. The first implementation to employ garbage collection to update ob-

jects in the heap and a flexible model that allows object transformers to

enforce execution order.

3. The first systematic methodology for developing state transformers to

repair application state, employing a novel dynamic analysis to auto-

matically generate the transformers.

4. The design, implementation, and evaluation, using real-world applica-

tions, of Jvolve, a Java VM with fully-featured support for dynamic

software updating, that is distinguished from prior work in its realism,

flexibility, technical novelty, and high performance.

8

This work demonstrates a significant step towards supporting flexible, efficient,

and safe updates in managed code virtual machines. We believe that our

design, implementation, and results show that this technology, together with

a rigorous testing regime, is ready to be adopted and be a part of future virtual

machines.

9

Chapter 2

Background

This chapter presents an overview of the dynamic updating problem.

It discusses the semantics of updates, explains safety guarantees that DSU

systems provide, and presents mechanisms that systems employ to support

DSU. This chapter focuses on DSU system requirements and mechanisms,

whereas Chapter 6 covers how prior systems chose among them.

The goal of DSU is to avoid application downtime in the face of soft-

ware updates. Researchers have addressed the problem of dynamic updating

in various contexts such as standalone and server applications, distributed

computing, distributed object stores, and databases for various types of code

updates, and types of code and data updates. This dissertation considers up-

dating a single application process, changing code and data to be as expected

by the new version.

2.1 Updating Code

The most primitive functionality any dynamic updating system must

support is the ability to call new versions of updated methods. Dynamic

updating systems in all types of contexts, be it in a compiled language like C,

or in a managed language runtime, or in a distributed computation framework,

resort to some form of indirection to call the new version of a function.

10

Systems for C/C++ such as Ginseng [64] and K42 [75] use indirection

for each function call. Each function call goes through a table that points to

the latest version of the function. At update time, the DSU system updates

table entries to point to new method versions. As a result, all future calls to

a method invoke its latest version. All systems using this approach pay an

additional overhead for all method calls during normal execution.

KSplice [5], a dynamic updating system for the Linux kernel uses tram-

polines to achieve indirection. In the absence of an update, kernel execution

happens normally. At update time, Ksplice overwrites the first few instruc-

tions of an updated method with a call instruction to the new version of a

method. Future function calls to an updated method call the old body, which

transfers execution to the newest version. With this approach, Ksplice pays

almost zero execution time overhead.

Function indirection in managed languages usually comes for free. To

make a function call in an interpreted language, the interpreter gets the method

body by looking it up by name in a dictionary. Dynamic updating systems

that work in the context of an interpreter only have to update this dictionary

to point to the new method versions.

In a managed language Virtual Machine that compiles code down to

machine code, all non-inlined calls typically go through either a Virtual Meth-

od Table (VMT) for virtual calls, or a global table for calls to static methods.

These tables point to the latest compiled version of each method. When the

VM compiles a method at a higher level of optimization because the method

is executed frequently, it updates the table to point to the new version. Jvol-

ve extends this functionality for dynamic updating, by rewriting table entries

to point to the new method version. If the compiler has previously inlined a

11

changed method into an unchanged calling method, Jvolve also rewrites the

table entries of these calling methods containing an inlined changed method.

We are aware of no other system that handles inlining.

2.2 Updating data

The most essential and challenging feature of any dynamic updating

system is to change application state — stored in local and global variables,

and in heap allocated objects — to conform to the semantics, type specifi-

cation, and concrete representation of the new version. Dynamic updating

systems by Hjálmtýsson and Gray [42] and Duggan [28] allow multiple ver-

sions of a type to coexist, where code and data objects from the old and new

program versions interact freely with each other. In this section, we restrict

our discussion to a model where all data values in the application are logically

of the latest version of their corresponding type, a property called represen-

tation consistency [77]. A system that maintains representation consistency

transforms all objects to correspond to their new type at update time, or

transforms each object when the application next accesses it.

In order to satisfy the semantics of the update, updating systems use

automatically-generated or programmer-written state transformers that return

new program state from old state. Depending on the dynamic updating con-

text, state transformers operate on stack state, global variables, heap objects,

or database tables. This section discusses mechanisms that systems employ to

support updates to application data and the semantics of updating data using

state transformers.

12

2.2.1 Implementation mechanisms

To update data, a system must address two questions. First, how does

the concrete representation of objects facilitate updating? Second, when are

object transformers invoked?

Concrete representation Systems such as Ginseng create a wrapper type

for each updateable type in the application. The system instruments the

program so that all object accesses go through the wrapper types. The wrapper

type uses padding to allow a new version to add fields to a type. The advantage

of padding is that it is straightforward to implement and integrates seamlessly

with the rest of the application. Objects declared as local variables and those

allocated dynamically on the heap are all update ready and are treated the

same. The disadvantages are that it wastes space and that a type cannot grow

larger than the initially allocated space.

An alternative approach is to use indirection where a field of the ob-

ject points to the additional fields in the updated types. Such an approach

is employed in the K42 operating system [75]. Indirection allows types to

grow arbitrarily large in size, but adds a memory access to dereference the

indirection pointer for each access to fields of the new version.

Another approach is to retain the same representation of objects as in a

system without dynamic updating. With this approach, the system allocates

new objects during update time and appropriately copies over contents from

old objects. However, such a system has to ensure that pointers to objects are

changed during the update to point to the newly allocated objects. Jvolve

is the first to implement this functionality. Jvolve does so by extending the

Virtual Machine’s garbage collector, as explained in detail in Section 3.5.5.

13

Transforming objects A design decision that dynamic updating systems

make is when and how to invoke state transformers on objects in the applica-

tion. One approach is to lazily transform objects after the update [64, 17, 72].

The system instruments every data access to check whether the concerned ob-

ject is of the latest type and invoke its state transformer if the object is not up

to date. The disadvantage of this approach is that the system must always in-

cur the overhead of instrumentation and the addition of a field in every object

to keep track of the version number. The advantage is that lazily transforming

objects amortizes the cost of invoking state transformers by spreading it across

application execution.

The other alternative is to eagerly transform all objects during update

time which requires a way to access all objects in the application. With this

model, the programmer must specify how to explicitly trace and transform

objects starting from global variables [40], or the system must maintain a reg-

istry of all live objects in the application [75]. Jvolve which implements

eager transformation piggybacks on the garbage collector to trace and iden-

tify live objects that need updating, and updates each such object based on

programmer specification.

2.2.2 Semantics of state transformers

The state of a running process consists of values of local and global

variables, heap data, and one or more Program Counters (PCs) indicating the

current execution point of all running application threads. A state transformer

maps state from the old version of a program to state as expected by the new

version. The semantics of the update is as intimately tied to the definition

of the state transformer function, as it is to the definition of the old and new

14

program versions themselves.

For instance, a state transformer that initializes all variables to the

value “unknown” and the PC to the start address of the new version, is equiv-

alent to stopping the old version of the program and restarting the new one.

Such a transformer would not be very useful and would defeat the purpose of

DSU. A useful and meaningful transformer has to come with an understanding

of semantics, both of the application and the update. There might be updates

where it is impossible to have a meaningful state transformer. Currently, DSU

systems rely on the programmer to provide such a state transformer function.

As an example, consider a bugfix where a programmer used a 32-bit

counter in an older version and changed it to a 64-bit counter in a newer

version, presumably because the 32-bit counter was insufficient to represent

real-world values of the counter. The best any state transformer can hope

to do in this scenario is to copy the old counter value into the new version

and pad the higher order bits with zeros. If the counter had indeed wrapped

around in the old version, there would be no way for the transformer to be

aware of this fact and know what the higher order bits should be. Leaving

the higher order bits as zeros might or might not affect useful execution of the

updated version. What is acceptable totally depends on the application and

update semantics and the expectations of the developers and users.

As another simple example, consider an application that stores points

with x and y co-ordinates in a 2-dimensional space. A feature of a newer

version might be that the application now supports a 3-dimensional space with

points having a z co-ordinate as well. In this case as well, a state transformer

function cannot hope to obtain an accurate representation of the new version’s

state. Setting the z co-ordinates to zero of existing points in the application

15

might in fact work. It also seems intuitive that setting z co-ordinates to values

other than zero might cause the application to work improperly. Such an

inference has to come from the developer with an understanding of the real-

world semantics of the application.

In this work, we assume that a correct and safe state transformer does

indeed exist, and ask what safety guarantees such as update correctness, type

safety, transaction safety, and representation consistency that a DSU system

can provide.

2.3 Safety of updates

Supporting updates to code and data in a system should not compro-

mise its safety. By safety, we mean that we want to make guarantees that a

DSU system and the update are valid and that the update and the application

would not perform illegal operations that are usually disallowed by normal ex-

ecution semantics. For example, the update should not lead the new version

to crash because it accessed an invalid memory location, or dereferenced a null

pointer, or accessed an object of a different type than it expected.

Update validity One guarantee a dynamic updating system may want to

make is that the update is valid. Gupta et al. offer the following definition of

update validity [38, 37]. A process or a running program P is a pair (Π, s),

where Π refers to the program’s code and s to its state. The state as men-

tioned above comprises locals, globals, heap data, and the current PC. An

update to P is a pair (Π′, S) where Π′ is the new version’s code and S is the

state transformer function. Applying the update involves applying the state

transformer function on the old state. The PC value of the old state is called

16

the update point and the resulting new state’s PC specifies the instruction at

which to resume execution. The updated process is (Π′, s′) where s′ = S(s).

An update is valid if and only if the new program resuming execution at state

s′ eventually goes to a reachable state s′′. We call s′′ to be reachable if the new

program starting from its initial state on the same set of inputs at some point

reaches state s′′. Gupta et al. showed that the problem of deciding whether or

not an update is valid for a state transformer in the general case is undecidable.

Undecidability means that we cannot come up with a general purpose

algorithm that, given Π, Π′, S and s, can say whether or not an update is valid.

However, they show that update validity can be verified formally by restricting

at which points an update takes place and what code the state transformer

can contain. These restrictions are too conservative. They only admit simple

changes to applications. While it might be impossible to guarantee update

validity, in general, we consider the following safety properties.

Type safety Type safety is a well-understood and highly desired property

of real programming languages. A type-safe system guarantees that any data

element accessed by code is of the right type expected by the code. A type-

safe DSU system guarantees type-safety of transformer code and new program

code that runs after the update.

DSU systems that support realistic changes provide a way to update

user defined types that change from the old to the new version. Each type t

that has changed representation from type τ in the old to type τ ′ in the new

version requires a type transformer function of type τ → τ ′. To keep update

semantics intuitive, DSU systems enforce that at any given point of time, there

is exactly one representation of a type t and that is the newest representation,

17

a property called representation consistency. To provide type safety, a DSU

system guarantees that no code is run, during or after the update, that expects

a representation of an earlier version.

Activeness safety A simple way to support representation consistency and

type safety is by not allowing any changed or deleted methods to be active on

stack at an update point. This restriction is called activeness safety [86, 5, 3, 9].

Activeness can be checked with a simple and accurate dynamic test that walks

all application stacks and looks for changed or deleted methods that are active

at a potential update point. It can also be enforced with a conservative static

analysis that examines the call graph of the old version. With either approach,

activeness safety guarantees type safety as follows. Consider the set of all

methods in the old and new version of the application. Some methods exist in

the old version but not in the new, either because these methods are changed,

or removed in the new version. Conversely, some methods exist in the new but

not in the old version. Presumably, there are unchanged method bodies that

are common to both the old and the new version. In a type-safe language,

the old and the new program versions are independently type-safe. Activeness

safety restricts active methods at an update point to the intersection between

the old and new versions. At update time, type transformer functions convert

all object representations to conform to the new version. After the update,

the application can only execute the new version methods, which are type-safe

by definition. Jvolve uses activeness safety because it is simple, guarantees

type-safety, requires only a list of changed methods, and is very efficient to

check at update time.

Restricting modified methods to be not active at update time can be too

18

1 function foo() {
2 ...
3 access type t1;
4 ...
5 access type t2;
6 ...
7 }

t1 is changed in the new version, t2 is not

Figure 2.1: Simple function illustrating con-freeness safety

constraining for multithreaded programs and for changes that affect methods

high in the call chain. These limitations stand in the way of correctly dynam-

ically updating more programs [40, 4]. A system with activeness safety would

never be able to update, for instance, an application that prints its version

number at the start of its main method, because the main method would al-

ways be active. An alternative is to allow old methods to run to completion

after the update, but invoke new version bodies for future method calls.

Con-freeness safety Stoyle et al. have defined a property called con-free-

ness of an update that ensures type safety and have developed a static updata-

bility analysis that answers whether or not an update point in the program

would violate con-freeness [77]. An update point p is said to be con-free if code

that comes after p (which would run after the update) does not concretely ac-

cess any updated type. Consider the simple function foo shown in Figure 2.1.

foo concretely accesses objects of two different types t1 and t2 respectively.

t1 is a type whose representation is changed in the new version, while t2’s

representation remains the same. The update process runs type transformers

for all objects of type t1. Let us look at con-freeness at update points cor-

responding to line numbers 2, 4, and 6. Line 2 is not con-free for the update

19

1 transaction {
2 ...
3 foo();
4 ...
5 bar();
6 ...
7 baz();
8 ...
9 }

Figure 2.2: Simple transaction region marked by the programmer

because the function will expect a type t1 object of the old representation,

but encounter a new version one. Line 4 is con-free for the update because

t2’s representation is unchanged between the old and new versions. Line 6,

of course, is con-free as it is the end of the method with no unsafe access

possible. Stoyle et al. test for con-freeness with a flow-sensitive backwards

dataflow analysis. Con-freeness safety is less restrictive than activeness, but

recent work shows that exploiting some of these additional update points can

lead to incorrect updates in real applications [39].

Transaction safety Transaction safety is a guarantee that a marked trans-

action fully obeys either the semantics of the old version or that of the new

version. Consider the simple example in Figure 2.2, where the programmer

has marked a region of code as a transaction. Let as assume that code in

the transaction is itself unchanged but methods foo, bar and baz might have

changed. Line 2 is always a safe update point since the entire transaction will

run the new code. Line 8 is also a safe update point since the entire trans-

action would have run the old code. If only one of the three called methods

is updated, all program points in the transaction are update safe, i.e., if the

program point occurs before the call to the changed method, the transaction

20

will have the semantics of the new version, whereas if the program point occurs

after the call to the changed method, the transaction will have the semantics

of the old version. Now, consider that both foo and baz are changed in the

new version. Line 4 and 6 are unsafe points because the transaction would run

the old version of foo, but run the new version of bar, violating transaction

safety.

2.3.1 Assuring safety by testing

When program analyses fail to provide formal guarantees of correct-

ness and safety, software developers use testing to develop confidence that

their programs execute correctly. The safety of Dynamic Software Updating

should be informally assured the same way. Hayden et al. [39] have devised

a framework that exhaustively tests updating an application. Their starting

point is a set of regression tests that is already used on a daily basis to as-

sure developers that the application runs correctly. Testing that the program

can be safely updated at all possible program points for each regression test

is prohibitively expensive. However, they employ a novel dynamic analysis

that minimizes the space of update points by grouping them into equivalence

classes. Update points in an equivalence class all produce the same execu-

tion behavior for a particular program trace. Update points that do not pass

all regression tests should be marked as unsafe when updating a production

system. Results from their work show that activeness safety and con-freeness

safety very closely approximate update correctness, but are not sufficient to

guarantee correct program execution.

21

2.4 Update Timing

The previous section dealt with safety properties at each program point

for a specific update. In this section, we discuss update timing, or how a

dynamic updating system ensures that an application reaches a program point

that is safe for the update.

Update points in a program DSU systems provide API calls that check

for and perform an update, and typically allow either the programmer or the

compiler to instrument program update points. Note that these points are

potential update points, and it is not necessarily safe to perform an update

at these points. Jvolve uses method entry points, method exit points, and

loop backedges as potential update points. These points are the same as safe

points in a Virtual Machine. At these safe points, the VM can safely switch

threads and perform garbage collection. Upstare, a DSU system for C, has the

same update points as Jvolve. In Jvolve, the compiler already instruments

these safe points for normal program execution, whereas in Upstare, the DSU

system has to instrument the program to make it updateable.

The developers of Ginseng observed that programs that benefit most

from dynamic updating are typically structured as long-running event pro-

cessing loops. Each loop iteration is usually independent of each other and

processes a particular transaction. The start of each loop iteration serves as

a quiescent point where there are no partially-completed transactions, and all

global state is consistent. The common use case scenario in Ginseng is for the

developer to mark update points at the start of outer loop iterations. Gin-

seng performs a static analysis to ensure that it is safe to update at a marked

program point, and updates the application during runtime.

22

Return barriers In Jvolve, a user can trigger an update at any time

during program execution. While Jvolve will suspend the application at the

earliest VM safe point it encounters, this point is not necessarily safe for the

update. For instance, a modified method might be active on stack, violating

activeness safety discussed in Section 2.3. In such situations, Jvolve installs

return barriers that trigger an update after all unsafe methods have returned.

Return barriers are most useful for long-running or frequently-invoked unsafe

methods, which are likely to be on stack almost all the time. Return barriers

are not sufficient if an unsafe method contains an infinite loop, and would

never return. There are at least two good solutions which deal with infinite

loops — stack reconstruction, used first in Upstare, discussed in Section 2.4.1,

and loop extraction, used first in Ginseng.

Loop extraction In loop extraction, the programmer can mark potentially

unsafe long running loops, and the compiler will extract the loop out into its

own function, that is called on each loop iteration. If an update changes the

loop body, the extracted function will be unsafe for the update, but the update

can happen after it returns and later loop iterations call the new version’s

function. Because of the code change, state used by the loop across iterations

might have to be updated as well. Ginseng automatically generates state

transformers for this loop state.

2.4.1 Updates to active methods

A dynamic updating system can improve flexibility by performing up-

dates to methods that are active on stack. Supporting updates to active meth-

ods in their full generality makes it impossible to guarantee even non-semantic

23

safety properties such as type-safety or correct execution that respects the lan-

guage specification. However, actual changes to real applications drive DSU

systems to support some changes to active methods. Systems lie on various

points in the spectrum from no support at all to more general support for

arbitrary code changes.

Systems that enforce activeness safety, do not support updates to active

methods. As mentioned in Section 2.3, these systems are type-safe but very

restrictive. They do support a simple update that changes a version number

string printed by the main method of the application, since the main method

is always active. Systems that enforce con-freeness safety, for instance Gin-

seng [64], support such updates by allowing existing methods to run the old

version, while executing newer versions for future invocations.

When considering changes to methods, it is important to mention the

level of abstraction at which we compare method versions. In systems that

compile source code to machine code, either statically in the case of C or

dynamically in the case of Java, the source code may be the same across

versions, while the compiled machine codes is different, as explained in more

detail in Section 3.3. When DSU systems refer to changes, they usually do so

at the compiled code level. Jvolve enforces activeness safety at the bytecode

level, i.e., only methods with unchanged bytecodes can be active at update

time. At the machine code level, Jvolve performs On-Stack Replacement.

Jvolve recompiles the method to generate machine code that conforms to

the new version of the application and switches execution of an active method

to this new code.

24

Stack extraction In order to support arbitrary changes to active methods, a

DSU system must extract an active method’s stack state, transform it to satisfy

the new version of the method, and transfer execution to the right instruction

in the new method’s body. Upstare is the only dynamic updating system we

are aware of, that supports updates to active methods [51]. Programmers

write a stack transformer function that takes takes the old version’s stack and

returns a new one. Upstare’s stack extraction support takes the old version’s

stack, applies the programmer specified transformer and resumes execution

after the update. This model relies heavily on developer expertise and testing.

2.4.2 Multithreaded applications

The above discussion on update points focussed mainly on single-threa-

ded applications. Other than stack reconstruction, which can update unsafe

methods in more than one thread, all other mechanisms fail for multithreaded

programs. Unsurprisingly, the challenge of synchronizing multiple threads to

all simultaneously be at a safe update point is hard. A DSU system has

to suspend a thread at a safe point, while waiting for other threads to also

reach respective safe points. This waiting can adversely affects application

throughput, and in the worst case may deadlock the application. Neamtiu

et al. address this problem in their work on Stump [62]. Stump allows the

developer to specify a few program points (in each thread) to be update safe.

The system then uses static analysis and runtime support to expand this list

to other program points with safe behavior. The runtime system synchronizes

across threads, resuming them if they have waited for too long.

25

2.5 Conclusion

In this chapter, we presented an overview of the dynamic software up-

dating problem. We discussed mechanisms for updating code and data that

meet desirable safety guarantees while processing the update in a timely fash-

ion.

26

Chapter 3

Jvolve System

This chapter discusses the Jvolve system. We present a high level

view of the system, supported changes, and the Jvolve Virtual Machine

implementation.

3.1 Introduction

Figure 3.1 illustrates the dynamic updating process. The left portion

depicts the work done offline. The developer writes the old and new versions of

the application, and tests them as part of the software development process.

The Update Preparation Tool (UPT) examines source code of the old and

new versions of the application and prepares a dynamic patch. The user feeds

the patch to a process with dynamic-updating support, depicted on the right.

The figure shows two processes, one running version one of an application,

showing stacks, code and heap; and another running version two of the same

application. The goal is to transition from a process running an old version of

the application, to one running the new version, on the fly, without stopping

and restarting the application.

We assume that developers write and fully test both the old and new

versions using standard development practices without anticipating that the

application is going to be updated dynamically. Testing is already a well es-

27

Time (MB of allocation)

Foo.java
Foo.java

Foo.java

Foo.java
Foo.java

Foo.java

current version

new version

Update
Preparation

Tool

Jvolve
Transformers.java

changed methods

changed classes
}

Code

bytecodes
machine

codes

Heap

Stacks

Version 1 process

Code

bytecodes
machine

codes

Version 2 process

Heap

Update Code

Update Data

Check update
safety

Stacks

Update Stacks

Figure 3.1: Overview of the Dynamic Updating process.

tablished part of software development. With dynamic updating, developers

should test the update process, in addition to testing their applications. When

it comes time to perform the update, the developer provides the source code

for the old and new versions to Jvolve’s Update Preparation Tool (UPT).

The UPT compares these two versions and provides a specification for the

update. The specification consists of two major parts. First, it contains infor-

mation about code changes that inform the VM when it is safe to perform the

update, what old methods to invalidate, and what new method bodies to load.

Second, it informs the VM how to deal with changes to data. The VM uses

this specification to transform classes and objects in the heap to conform to

their new version. The programmer has the option to modify the update spec-

ification. Specifically, the UPT does not reason deeply about the semantics

of data structure changes. The programmer may need to modify the UPTs

output to obtain a correct program.

Given an update specification, the user signals the running VM to apply

the update. The VM loads the new class files and schedules the update. The

VM scheduler signals an interrupt, which stops all threads at VM safe points,

28

where it is safe to perform thread scheduling and garbage collection. Jvolve

then checks if the VM is at a DSU safe point. DSU safe points require that

no thread’s activation stack contains a restricted method, which is part of the

specification.

Restricted methods are of three categories: (1) methods changed by

the update, (2) methods whose bytecode is unchanged but whose compiled

representation may change, and (3) methods specified by the user or testing

process for semantic reasons. If restricted methods are on stack, the VM in-

stalls return-barriers for (1) and (3), and performs on-stack-replacement for (2)

to reach a DSU safe point. Section 3.5.2 describes how Jvolve reaches a safe

point in detail.

Once all application threads have synchronized at DSU safe points,

Jvolve applies the update. It first invalidates the compiled versions of all

changed methods. These methods are recompiled as needed—the adaptive

JIT compiler will generate code the next time the program invokes an in-

validated method, and will optimize it further, if the program executes it

frequently enough. The VM then initiates a full copying garbage collection. It

piggybacks on the garbage collector to detect all existing objects whose classes

change. It allocates objects that conform to the new class definitions. Finally,

after garbage collection, Jvolve performs class and object transformations to

populate per-class static fields and per-object instance fields with valid state.

At this point, the update is complete.

3.2 Supported Changes

We have designed a simple, yet flexible update model that supports

updates that we have seen to be common in practice.

29

1 private int x;
2 private static int y;
3 public int getX();
4 public static int getY();

1 private double x;
2 private static double y;
3 public double getX();
4 public static double getY();

(a) Old version (b) New version

Figure 3.2: Examples of an update that changes class signature

Method body changes Programmers may change method bodies. Method

body updates are the simplest and most commonly supported change [81, 56,

29, 36, 67, 75, 42]. DSU systems can preserve type safety by simply invoking

the new method the next time the program executes the method. However, re-

stricting updates to only method bodies prevents many common changes [61].

Chapter 5 shows that over half the releases of Jetty, JavaEmailServer, and

CrossFTP, the programs we studied, change more than method bodies.

Class signature changes Programmers may also change class signatures

in various ways. The class signature includes all fields and methods defined by

the class and those inherited from super classes. A programmer may change

method signatures by changing the type or number of method arguments.

They may add or delete virtual and static field members, and change the

types or access modifiers of existing members. These changes may occur at

any level of the class hierarchy. For example, programmers may delete a field

from a parent class and this change will propagate correctly to the class’s

descendants.

Figure 3.2 provides examples of class signature changes. Each line in the

figure defines either a field or a method and represents a class signature change

30

1 public class User {
2 private final String username, domain, password;
3 private String[] forwardAddresses;
4 public User(...) {...}
5 public String[] getForwardedAddresses() {...}
6 public void setForwardedAddresses(String[] f) {...}
7 }
8 public class ConfigurationManager {
9 private User loadUser(...) {

10 ...
11 User user = new User(...);
12 String[] f = ...;
13 user.setForwardedAddresses(f);
14 return user;
15 }
16 }

(a) Version 1.3.1

1 public class User {
2 private final String username, domain, password;
3 private EmailAddress[] forwardAddresses;
4 public User(...) {...}
5 public EmailAddress[] getForwardedAddresses() {...}
6 public void setForwardedAddresses(EmailAddress[] f) {...}
7 }
8 public class ConfigurationManager {
9 private User loadUser(...) {

10 ...
11 User user = new User(...);
12 EmailAddress[] f = ...;
13 user.setForwardedAddresses(f);
14 return user;
15 }
16 }

(b) Version 1.3.2

Figure 3.3: Changes to JavaEmailServer User and ConfigurationManager

classes from version 1.3.1 to version 1.3.2

31

in the new version. Internally, UPT does not view this update as changing

the signature of individual fields and methods. Instead, it views the update

as removing the field int x and adding a new field double x, and similarly

for the methods. Irrespective of how UPT views this change, it is pertinent to

note that any reference to these fields and methods in the new version must

conform to the new type signature. The Java to bytecode compiler will ensure

that the standalone new version of the program is well-formed.

Jvolve does not support permutations of the class hierarchy, e.g.,

reversing a super-class relationship. While this change may be desirable in

principle, in practice, it requires sophisticated transformers that enforce up-

date ordering constraints. None of the program versions we examined make

this type of change. Jvolve also does not support renaming a class, though

this functionality should be easy to add.

Example. Consider the following update from JavaEmailServer, a simple

SMTP and POP e-mail server. Figure 3.3 illustrates a pair of classes that

change between versions 1.3.1 and 1.3.2. Jvolve fully supports these changes.

JavaEmailServer uses the class User to maintain information about e-mail user

accounts in the server. Moving from version 1.3.1 to 1.3.2, there are three

differences. First, the method loadUser fixes some problems with the loading

of forwarded addresses from a configuration file (details not shown). This

change is a simple method update. Second, the array of forwarded addresses

in the new version contains instances of a new class, EmailAddress, rather than

String. This change modifies the class signature of User since it modifies the

type of forwardedAddresses. Finally, the class’s setForwardedAddresses

method is also altered to take an array of EmailAddresses instead of an array

32

of Strings, and code from loadUser accommodates this change as well.

3.3 VM object model and method dispatch

Jvolve’s dynamic application of an update closely follows UPT’s static

specification, and is related to how a JVM would support field accesses and

method calls. In languages such as C and Java accessing a field involves reading

to or writing from an offset from a structure or object’s address. This offset

is determined at compile-time. In a language like Java, by compile-time we

mean the time when bytecode is translated to machine code. Method calls in

C, involve jumping to a memory location that contains the machine code for

the called method. Method calls in Java are similar, except that a JVM needs

to support virtual method dispatch. There can be different definitions of the

same method and which one is invoked depends on the object in hand. JVMs

use Virtual Method Tables which contain pointers to compiled machine codes

of methods. A method call looks up the contents of a particular slot in the

VMT and jumps to that address.

We illustrate how a typical VM supports field accesses and method calls

with a simple example shown in Figure 3.4. The class A defines two integer

fields x and y. Objects of type A have these fields laid out contiguously.

Objects of class B have an additional integer field z. In managed languages,

the runtime system maintains a header field for all objects, which it uses to

look up at runtime the type of a particular object instance. The runtime also

uses the object header to look up the type’s VMT to invoke methods. class

A’s VMT has method f() at slot 0 and method g() at slot 1. The class B

overrides method g(). In addition, class B defines a new method h() that

takes slot 2. Figure 3.4 (b) shows VMTs of A and B. VMT slots point to

33

1 public class A {
2 private int x, y;
3 public void f() {
4 g();
5 };
6 public void g() {
7 this.y = 0;
8 }
9 }

10

11 public class B
12 extends A {
13 private int z;
14 public void g() {
15 this.z = 0;
16 }
17 public void h() {}
18 }

f

g

f

g

h

0

1

0

1

2

class A's VMT class B's VMT

x yhdr
-4 0 4

x yhdr
-4 0 4

x yhdr
-4 0 4

z
8

x yhdr
-4 0 4

z
8

(a) Java source code (b) Objects and VMTs in the heap

1 aload_0
2 invokevirtual <A.g>
3 return

(a) Bytecode for A.f()

1 The stack pointer points to "this"
2 EDX := this
3 MOV EDX [ESP]
4 The VMT is at offset -4
5 ECS := VMT
6 MOV ECX -4[EDX]
7 Send this parameter in EAX
8 EAX := this
9 MOV EAX [ESP]

10 Call function g()
11 g() is at offset 8 within VMT
12 CALL 8[ECX]

(d) Machine code for the
invokevirtual instruction

Figure 3.4: Simple example of method and field accesses to illustrate how
inheritance is implemented in Java

34

compiled machine code of respective methods. A.f() and B.f() both point

to the same code, while A.g() and B.g() point to different methods since B

overrides g(). The figure also shows objects of type A and B. The header field

of these objects (chosen arbitrarily to be at offset -4) allow access to their

respective VMTs.

Figure 3.4 (d) shows function f()’s generated machine code. The call

to g() refers to VMT slot 1 (at offset 8). This call invokes either A.g() or

B.g() based on the type of the object making the call. Whenever the VMT

slot of a method is known at compile time, callers of that method use the offset

in their machine code. Similarly, the machine code usually contains offsets of

fields as well — for instance, functions A.g() and B.g() referring to offsets

for y and z respectively. The interface a VM presents to the compiler consists

of the following — Virtual Method Table with methods at various slots, and

objects with fields laid out at various offsets.

3.4 Jvolve’s view of updates

Jvolve groups updates presented by the UPT into two categories —

those that change the exposed representation of a class, and those that don’t.

Jvolve handles updates as follows.

• Method body changes: Jvolve invalidates any old machine code, loads

the new bytecode of the method, and lazily generates new machine code.

• Class signature changes:

1. The update changes the number and offsets of fields within an ob-

ject. Jvolve creates new object instances that conform to the

35

layout of the new version and copies fields appropriately. Jvolve

also needs to initialize fields that do not exist in the old version.

Section 3.4.1 talks about such changes and how Jvolve transforms

objects to conform to the semantics of the application.

2. The update changes the number and offsets of method slots in a

class’ Virtual Method Table. Jvolve creates new VMTs and points

all object instances to this new VMT.

• Methods that are not changed by the update but that refer to classes

with signature changes. The machine code of such methods will have

field and method offsets that are invalid in the new version. Jvolve

invalidates old codes, and lazily recompiles such methods to generate

machine code afresh. We refer to such methods as indirect updates.

Jvolve, with respect to the implementation of dynamic updating, does

not view classes as monolithic collections of fields and methods. Instead it

views them as method bodies that need to be updated, and structure instances

whose fields need to be aligned and have proper values to conform to the

semantics of the new version.

3.4.1 Class and Object Transformers

For classes whose signatures have changed, an object transformer met-

hod initializes a new version of the object based on the old version. For

example, consider the class Point in Figure 3.5. The Point class in the old

version represents points in a 2-dimensional space with fields x and y. After

the update, the new version represents points in a 3-dimensional space with

the additional field z. The object transformer’s job is to modify each ob-

36

1 class Point {
2 double x, y;
3 }

1 class Point {
2 double x, y, z;
3 }

(a) Old version (b) New version

1 class JvolveTransformers {
2 public static void jvolveObject(
3 Point to, old_Point from) {
4 to.x = from.x;
5 to.y = from.y;
6 to.z = 0.0;
7 }
8 }

(c) Default UPT-generated object trans-
former

Figure 3.5: Example of a simple class and the default object transformer

ject instance of type Point in the heap to conform to its new class definition.

Class transformers serve a similar purpose and update static fields, rather than

instance fields. The UPT generates default class and object transformers au-

tomatically, retaining unchanged fields and initializing new or changed ones.

The default object transformer, show in Figure 3.5 (c) for our changed Point

class copies fields x and y from an old object to a transformed object and

initializes z to zero.

For our example from JavaEmailServer in Figure 3.3, the UPT identifies

that the User and ConfigurationManager classes have changed, and produces

default object transformers. The programmer elects to modify the object

transformer for the class User, as illustrated in Figure 3.6.

Object and class transformer methods are simply static methods in

the class JvolveTransformers, which is created by UPT and loaded by Jvo-

37

1 public class v131_User {
2 private final String username, domain, password;
3 private String[] forwardAddresses;
4 }
5 public class JvolveTransformers {
6 ...
7 public static void jvolveClass(User unused) {}
8 public static void jvolveObject(User to, v131_User from) {
9 to.username = from.username;

10 to.domain = from.domain;
11 to.password = from.password;
12 // default transformer would have:
13 // to.forwardAddresses = null
14 int len = from.forwardAddresses.length;
15 to.forwardAddresses = new EmailAddress[len];
16 for (int i = 0; i < len; i++) {
17 String[] parts =
18 from.forwardAddresses[i].split("@", 2);
19 to.forwardAddresses[i] =
20 new EmailAddress(parts[0], parts[1]);
21 }
22 }
23 }

Figure 3.6: User object transformer for update from JavaEmailServer version
1.3.1 to version 1.3.2

lve at update time. The class transformer method jvolveClass takes an

instance of the new class as a dummy argument. Standard overloading in Java

distinguishes the jvolveClass methods for different classes. (In our example,

jvolveClass does nothing.) The object transformer method jvolveObject

takes two reference arguments: to, the uninitialized new version of the object,

and from, the old version of the object. We prepend a version number to the

names of old classes to distinguish them from the new versions. Based on the

UPT specification, but before the VM loads the JvolveTransformers class,

the VM renames the old class in all its internal data structures. This renaming

makes the class name space and the JvolveTransformers class type-correct.

38

In our example, the VM renames the old version of User to class v131_User,

which is the type of the from argument to the jvolveObject method in the

new User class. The v131_User class contains only field definitions from the

original class; all methods have been removed since the updated program may

not call them, as discussed below.

A typical transformer initializes a new field to its default value (e.g.,

0 for integers or null for references) and copies references to the old val-

ues. In the example, the first three lines simply copy the previous values of

username, domain, and password. A more interesting case is the field type

change to forwardedAddresses. The default transformer function would ini-

tialize the forwardedAddresses field to null because of the type change.

The customized update function in Figure 3.6 instead allocates a new array of

EmailAddresses and initializes them to substrings of the String objects from

the old array.

Because the transformer class is separate from the old and new object

classes, the Java type system would normally forbid the transformer, access

to their private fields. There is no obvious solution to this problem that

conforms to the Java type system during an update. We could define object

transformers as methods of the old changed classes, which would grant access

to the old fields, but not the new ones. Defining transformers as methods of

the new changed class has the reverse problem. Also, the Java type system

would disallow writes to final fields from within the transformer functions.

A final field is “write once” fields and can be written to only in construc-

tor methods. To avoid these problems, we compile our transformation class

separately. We extend the JastAdd Java-to-bytecode extensible compiler [32]

to ignore access modifiers (e.g., private and protected) and allow methods

39

to assign to final fields only during an update. Bytecode that ignores these

modifiers would not normally verify. JikesRVM, on which Jvolve is built,

does not implement a bytecode verifier. Aside from this exceptional case,

Jvolve classes are compiled normally and would pass verification. The VM

executes these Java functions normally, because they are otherwise standard

Java. Since the transformation class is only active and available during the

update, after the update the system no longer accesses the transformer func-

tions. Separating transformers from updated classes avoids cluttered class files

at run-time, and makes dynamic updating more transparent to developers.

Supported in its full generality, a transformer method may reference

any object reachable from the global (static) namespace of both the old and

new classes, and read or write fields or call methods on the old version of an

updated object and/or any objects reachable from it. Jvolve presents a more

limited interface (similar to past work [72, 53]). In particular, the only access

to the new class namespace is via the to pointer, whose fields are uninitialized.

The old class namespace is accessible, with two caveats. First, fields of old

objects may be dereferenced, but only if the update has not changed the

object’s class, or if it has, after the referenced objects are transformed to

conform to the new class definition. Second, no methods may be called on

any object whose class was updated. In Figure 3.6 class v131_User is defined

in terms of the fields it contains; no methods are shown. As explained in

Section 3.5.5, these limitations stem from the goal of keeping our garbage

collector-based traversal safe and relatively simple. This interface is sufficient

to handle all of the updates we tested. Section 4.1 goes into detail on how our

implementation influences our model for object transformers, its limitations

and alternative approaches.

40

An alternative programming model would be that transformers could

dereference from object fields and see the old objects, rather than the trans-

formed ones. Boyapati et al. [17] implement this model, as described in Sec-

tion 6.3. Our experience and that of others [8, 64, 62, 51] indicate that our

model expresses many updates well. We leave to future work a detailed inves-

tigation of the semantics and expressiveness of both models.

3.5 Implementation

This section describes how Jvolve supports dynamic updating by ex-

tending common virtual machine services. Jvolve is built on JikesRVM,

a high-performance Java-in-Java Research VM [2, 83]. Jvolve integrates

and extends JikesRVM’s dynamic classloader, JIT compiler, thread scheduler,

copying garbage collector (GC), and support for return barriers and on-stack

replacement to implement dynamic updating.

After the user prepares and tests a program’s modifications, the update

process in Jvolve proceeds in five steps. (1) UPT generates an update spec-

ification. (2) The user signals Jvolve. (3) Jvolve stops running threads at

a DSU safe point. (4) It loads the updated classes, the transformer functions,

and installs the modified methods and classes. (5) Jvolve then applies object

and class transformers following a modified GC.

3.5.1 Preparing the update

To determine the changed classes and methods for a given release, we

wrote Update Preparation Tool (UPT). UPT is built using jclasslib, a Java

bytecode library [31]. UPT examines differences between the old and new

classes provided by the user, and groups them into the following categories

41

described in Section 3.2.

Class updates: These updates change the class signature by adding, remov-

ing, or changing the types of fields and methods.

Method body updates: These updates change only the internal implemen-

tation of a method.

Indirect method updates: These are methods whose bytecode is unchan-

ged, but the VM recompiles them because they refer to fields and meth-

ods of updated classes. The compiled code uses hard-coded field offsets,

and the update may change these offsets.

UPT generates default object and class transformer functions for all

class updates, which the programmer may optionally modify. After compil-

ing the transformers with our custom JastAdd compiler (described in Sec-

tion 3.4.1), the user initiates the update by signaling the Jvolve VM and

providing the new version of the application, the update specification file, and

the transformers class file.

3.5.2 DSU safe points

Jvolve enforces various update safety properties by restricting at what

points in the program an update can happen, called DSU safe points. DSU

safe points occur at VM safe points but further restrict the methods on the

threads’ stacks. These restrictions provide sensible update semantics: no code

from the new version executes before the update completes, and no code from

the old version executes afterward. These restrictions also ensure that the

update is type-safe, that the compiled version of methods are consistent with

42

the update, and that the update respects program semantics. As mentioned in

Section 3.1 and above, we divide restricted methods into three categories: (1)

methods whose bytecode has changed; (2) methods whose bytecode has not

changed but that access an updated class; and (3) methods the user blacklists.

We next discuss why these restrictions improve the safety and semantics

of updates, and then describe the actions Jvolve takes to reach a DSU safe

point.

Semantics of DSU safe points. To understand why category (1) methods

are restricted, consider the update from Figure 3.3. Assume the thread is

stopped at the beginning of the ConfigurationManager.loadUser method. If

the update takes effect at this point, the new implementation of User.setFor-

wardedAddresses will take an object of type EmailAddress[] as its argument.

However, if the old version of loadUser were to resume, it would still call

setForwardedAddresses with an array of Strings, resulting in a type error.

Preventing an update until changed methods are no longer on the stack

ensures type safety because when the new version of the program resumes, it

will be self consistent. If a programmer changes the type signature of a method

m, for the program to compile properly, the programmer must also change any

methods that call m. In our example, the fact that setForwardedAddresses

changed type necessitated changing the function loadUser to call it with the

new type. With this safety condition, there is no possibility that the signature

of method m could change and some old caller could call it—the update must

also include all updated callers of m. These cases must be considered by dy-

namic updating systems. Our choice of restricted methods is similar to other

DSU systems [72, 53, 3, 29, 81, 56, 21, 75].

43

Ensuring type-safety Jvolve does not allow methods with changed byte-

codes to be active on stack when performing the update. This restriction by

itself ensures type-safety of Jvolve’s update process. Let us consider the set

of all method bodies in the old and new versions of the application. Some

methods exist in the old version and not the new, either because these these

methods are modified, or are completely removed in the new version. Similarly,

some methods exist in the new version but not in the old one. Several method

bodies (bytecodes) are common to both the old and new versions. From stan-

dard Java semantics, the old and the new versions are individually type-safe.

Jvolve requires that only methods common to both versions be active on the

stack at the time of the update. This restriction together with the fact that

we transform all heap objects to conform to their new type signature, ensures

that the application is type-safe after the update.

Ensuring correct compiled code Category (2) methods stem from indi-

rect updates as mentioned in Section 3.3. Suppose some method getStatus

calls method getForwardedAddresses from our example, but getStatus sou-

rce code and bytecode has not changed from versions 1.3.1 to 1.3.2. Neverthe-

less, getStatus’s machine code, produced by the JIT compiler, may need to be

recompiled. For example, if the new compiled version of getForwardedAddre-

sses is at a different offset than before, then the VM must recompile getStat-

us to correctly refer to the new offset. An update may also change field offsets

in modified classes, which requires recompiling any class that accesses them as

well. Ginseng [64] and POLUS [21], two DSU systems for C, likewise consider

functions as changed if their source code is the same but they access data types

whose (compiled) representation is different. Note that a VM would not need

44

to restrict category (2) methods if it used an interpreter that looked up offsets

at each access.

Note that when the VM JIT compiler uses inlining, we may need to

increase the number of restricted methods to include those into which the

compiler inlined restricted methods. In particular, if a category (1), (2), or (3)

method m is inlined into method n, we also restrict n (and recompile it lazily af-

ter the update) to prevent the old m from running after the update. JikesRVM

initially compiles a method with its base-compiler, which generates machine

code but does not apply sophisticated optimizations. Based on run-time pro-

filing information, the VM may recompile the same method later using its

optimizing compiler, which performs standard optimizations, including inlin-

ing. It performs inlining of small, frequently used methods; cost-based inlining

for larger methods; and may inline multiple levels down a hot call chain [6].

As a consequence, Jvolve restricts inlined callers of restricted methods.

Ensuring program specific semantics Even if a method has not chan-

ged, a user may need to manually blacklist it. For example, suppose a method

handle calls methods process and cleanup, and the method cleanup initial-

izes a field that it uses. Now suppose we update this program to move the

initialization statement into process, because process needs to use the field

as well. In both versions, the field is properly initialized when the program

runs from scratch. However, suppose that Jvolve applies the update and the

thread running handle yields in between the calls to process and cleanup.

In this case, handle’s bytecode has not been changed, so we could go ahead

with the update. But if we did, then the program would have called the old

process method, which did not perform any initialization, and then would

45

call the new cleanup method, which performs no initialization either, since

the new version process does it, leading to incorrect semantics. To avoid such

version consistency problems [63] the programmer should include handle in

the restricted set. DSU testing can also help produce such a list [39]. Our

benchmarks discussed in Chapter 5 did not require manual restrictions, but a

DSU system must support it to provide correctness in many cases.

While these restrictions informally assure the safety of updates, more

work is needed to formally define update semantics and guarantee safety, as

mentioned in Section 2.3.

Reaching a DSU safe point. To safely perform VM services such as thread

scheduling, garbage collection, and JIT compilation, JikesRVM, like most pro-

duction VMs, inserts yield points on all method entries, method exits, and

loop back edges. If the VM wants to perform a garbage collection or schedule

a higher priority thread, it sets a yield flag, and the threads stop at the next

VM safe point. Jvolve piggybacks on this functionality. When Jvolve is

informed that an update is available, it sets the yield flag. Once application

threads on all processors have reached VM safe points, Jvolve checks the

paused threads’ stacks. If no stack refers to a restricted method, Jvolve

applies the update.

If any thread is running a restricted method, Jvolve defers the update

and installs a return barrier [90] on the topmost restricted method of each

thread. A generic return barrier replaces the specified method return branch

back to the next instruction in the calling method with a branch instead to

bridge code, which performs some special action and then executes the return

branch. We added this generic return barrier functionality to JikesRVM. This

46

technology is standard in other VMs. Our bridge code restarts the update

process. When a restricted method returns, the thread will block and Jvolve

will restart the update process, which will either reach a DSU safe point, or

the VM will insert more return barriers. If Jvolve does not reach a safe point

within 15 seconds, it aborts the update (the length of the timeout is arbitrary,

and can be configured by the user). However, with some additional care and

stack state transformation, we proceed with some updates despite category (2)

methods active on stack, as described next.

3.5.3 On-Stack Replacement to lift category (2) restrictions

Jvolve reduces the number of restricted methods in category (2) by

leveraging VM support for On-Stack Replacement (OSR) [19, 43]. State-of-

the-art VMs use adaptive strategies to selectively compile and recompile meth-

ods at increasing levels of optimization as they get invoked more number of

times, i.e. become hot. Usually, after recompilation, the next method invoca-

tion runs the optimized version. However, some methods are long-running and

VMs need a mechanism to transition from an actively running compiled ver-

sion of a method to a more optimized version. JikesRVM normally uses OSR

to replace a base-compiled version of an active method with an optimized

version. We observe that for category (2) restricted methods, the situation

is much the same. An unchanged, on-stack method requires recompilation,

in our case to fix any changed offsets. If the stack only contains unchanged

and category (2) methods, Jvolve first performs OSR on the category (2)

methods, and then starts the update. Jvolve currently supports OSR only

for base-compiled category (2) methods. We leave engineering Jvolve to

support OSR for optimized methods to future work.

47

1 class C {
2 static int sum(int c) {
3 int y = 0;
4 for (int i = 0; i < c; i++) {
5 y += i;
6 }
7 return y;
8 }
9 }

(a) A simple example showing method
sum

1 0 iconst_0
2 1 istore_1
3 2 iconst_0
4 3 istore_2
5 4 goto 14
6 7 iload_1
7 8 iload_2
8 9 iadd
9 10 istore_1

10 11 iinc 2 1
11 14 iload_2
12 15 iload_0
13 16 if_icmplt 7
14 19 iload_1
15 20 ireturn

(b) bytecode for sum

Running thread: MainThread
Frame Pointer: 0xSomeAddress
Program Counter: 16
Local variables:

L0 (c) = 100;
L1 (y) = 1225;
L2 (i) = 50;

Stack expressions:
S0 = 50;
S1 = 100;

(c) State extracted from the stack frame

1 ldc 100
2 istore_0
3 ldc 1225
4 istore_1
5 ldc 50
6 istore_2
7 ldc 50
8 ldc 100
9 goto 16

10 0 iconst_0
11 ...
12 16 if_icmplt 7
13 ...
14 20 ireturn

(d) Version of sum with
specialized prologue

Figure 3.7: Example of JikesRVM’s OSR mechanism [35]

48

JikesRVM has an excellent OSR functionality [35] that is simple and

mostly compiler independent, expect for extracting stack state. The OSR

mechanism does not depend on the compilers used to compile the two dif-

ferent versions of methods. OSR in JikesRVM takes effect when the thread

running the to-be-recompiled method reaches a yield point. After reaching the

yieldpoint, JikesRVM recompiles the topmost method on the thread’s stack

and modifies the thread’s PC to switch to the newly recompiled method body.

The key challenge in making OSR work is to correctly transition the PC to the

new compiled code. The VM must construct a new stack frame as expected

by the new code and find the PC value in the new code that corresponds to

the old one. JikesRVM first examines the currently active stack frame and

extracts the values of local variable. It then generates a special prologue, in

bytecode, that will set local variables to their correct values. The last bytecode

instruction of this special prologue jumps to the bytecode at which to resume

execution. JikesRVM makes this transition compiler-independent by express-

ing it in bytecode. The optimizing compiler can compile the method with this

special prologue. Jumping to the start of the method will allow the VM to set

up the stack frame as expected by the new version and resume execution at

the right location. Figure 3.7 shows an example of JikesRVM’s OSR transition

mechanism. This example is taken from Fink et al. [35]. Figure 3.7 shows the

specialized prologue that sets up the stack frame.

We extend JikesRVM’s OSR facilities to support multiple stack activa-

tion records, and multiple stack frames on the same stack. This later addition

makes it more likely to reach a DSU safe point when more than one cate-

gory (2) method precedes a changed method on the stack. Given this support,

Jvolve ignores base-compiled category (2) methods when testing for a safe

49

type name

members

tib

name

offset

name

offset

name

offset

bytecode

asm

name

offset

bytecode

asm

type

method0

method1

...

Name Type Method 0 Method 1 Field 0 Field 1

TIB

Figure 3.8: JikesRVM meta-data schema for each class

point. If any base-compiled category (2) methods are on stack at an otherwise

DSU safe point, Jvolve uses OSR to replace them. Once Jvolve reaches a

DSU safe point, it next installs the modified classes.

3.5.4 Installing modified classes

At a DSU safe point, Jvolve begins the update by loading and in-

stalling the changed classes, and updating relevant metadata in the existing

versions.

JikesRVM represents classes with several internal data structures. Fig-

ure 3.8 shows the information JikesRVM associates with a class. Each class

has an RVMClass meta-object that describes the class. It points to other meta-

objects that describe the class’s method and field types and offsets in an object

instance. The compiler and garbage collector query this metadata. The com-

piler hard codes these offsets in generated machine code when accessing fields

and when calling methods. These offsets are statically known when a class

is loaded. JikesRVM and other VMs lay out fields and methods in Virtual

Method Tables (VMTs) in such a way that a given field or method has the

50

type name

members

tib

name

offset

name

offset

name

offset

bytecode

asm

name

offset

bytecode

asm

type

method0

method1

...

Name Type Method 0 Method 1 Field 0 Field 1

TIB

type

name

members

tib

name

offset

name

offset

name

offset

bytecode

asm

name

offset

bytecode

asm

type

method0

method1

...

Name

Type Method 0 Method 1 Field 0 Field 1

TIB

Figure 3.9: JikesRVM meta-data showing the old class name pointing to a
newer class after an update

same offset or slot in all subclasses. As explained in Section 3.3, in VMTs,

subclass methods share the same slot as superclass methods they override.

This sharing eases dynamic dispatch — which method is called is decided at

runtime based on the object in hand. When a program invokes a method on

an object, the generated code indexes the object’s VMT at the correct offset

and jumps to the machine code. JikesRVM uses an array called the Type

Information Block (TIB) for its VMT. The first entry of the array points to

the RVMClass meta-object for that class. The garbage collector uses this entry

to look up the type of a particular object. The rest of the entries in the array

serve as VMT slots.

51

For a class with only method body updates, all of the class’s metadata

is the same in both the old and new versions. Therefore, Jvolve invalidates

the TIB code entries for each replaced method, reads in the new method body

bytecode, and modifies the existing class metadata to refer to the replacement

methods’ bytecode. The JIT will compile the updated method when the pro-

gram next invokes it, after the update.

For a class with changed signature, the class’s number, type, and order

of fields or methods may have changed, which in turn impacts the class’s

metadata, including its TIB. Jvolve modifies existing class metadata as

follows. First, it changes the old class’s metadata to use a modified class

name, e.g., metadata for class User is renamed to v131_User in our example

update from Figure 3.3 and 3.6. At this point, it is as if class User never

existed. Jvolve reads in User’s class file as it normally does and sets up

metadata for the new version and updates its data structures to indicate that

the newly-loaded class is now the up-to-date version. Note that all TIB

entries for the newly-installed class are invalid, so all methods in the class will

be compiled on demand. Jvolve invalidates the TIB entries and other data

structures for the old class so that they can be garbage-collected.

Invalidating changed methods will impose overhead on the execution

just following the update when these methods are first base-compiled and

then when they are progressively optimized at higher levels, if they execute

frequently. We could reduce this overhead somewhat by optimizing new ver-

sions directly to their prior level of optimization. Updates to method bodies

however invalidate execution profiles and without branch and call frequencies,

code quality would degrade. Thus, we believe it is better to let the adap-

tive compiler work as it was intended. In any case, since dynamic updates

52

are relatively rare events, any added overhead due to recompilation will be

short-lived.

As mentioned in Section 3.5.3, Jvolve uses on-stack replacement to

update active category (2) methods. The VM triggers on-stack replacement

after the application resumes execution when callees of category (2) meth-

ods return. In order to resume execution, Jvolve must update data in the

heap. Jvolve initiates a full-heap garbage collection and transforms objects

of updated classes, which we get to next.

3.5.5 Applying Transformers

We modify the JikesRVM semi-space copying collector [14, 22] to up-

date changed objects as part of a collection. The collector traverses the heap,

copies reachable objects, and creates additional empty copies for all updated

live objects. After collection, Jvolve walks through these updated objects,

runs their object transformers, and sets their fields appropriately. We first

examine JikesRVM’s semi-space copying collector and the tricolor abstrac-

tion [26, 46] it maintains, and then present Jvolve’s modifications.

In the tricolor abstraction, the GC maintains colors for each object as

it performs a full-heap traversal to compute the transitive closure of reachable

objects. Objects have one of three colors: white objects are yet to be visited;

black objects have been visited and their immediate children have been visited

has well; grey objects have been visited but their children might not have been

visited. In this abstraction, collectors maintain the invariant that no black

object can point to a white object. At the end of the traversal, there are no

grey objects. Objects that are unreachable are white and are freed by the

collector. Reachable objects are black and survive the collection.

53

1 function GC(roots):
2 Q := empty
3 for r in roots:
4 r.color = GREY
5 Q.add(r)
6 while Q not empty:
7 object = Q.pop()
8 scanObject(object)
9

10 // precondition: object is GREY
11 function scanObject(object):
12 for field in object:
13 object.field = moveObject(object.field)
14 object.color = BLACK
15

16 // precondition: object is either a forwarding
17 // pointer or a WHITE object. Either way,
18 // object resides in from space.
19 function moveObject(object):
20 if object is real:
21 copy = copyObject(object)
22 copy.color = GREY
23 Q.add(copy)
24 object.FP = copy
25 return copy
26 if object is a forwarding pointer:
27 return object.FP
28

29 // precondition: object is WHITE
30 function copyObject(object):
31 copy = malloc() # in to space
32 memcopy(copy, object)
33 return copy

Figure 3.10: Semi-space copying collector pseudo-code

54

The semi-space collector maintains the tricolor abstraction as follows.

The heap is divided into two spaces — the currently active heap with all

objects, called the from-space, and an empty heap called to-space. During

the traversal, the collector copies reachable objects from from-space to to-

space and leaves unreachable ones in from-space. At the end of collection, the

entire from-space is reclaimed. Initially, all objects in from-space are colored

white. The traversal begins at roots. The roots include statics, stack-allocated

local variables, and references in registers. The compiler generates a stack

map at every VM safe point (a superset of DSU safe points). The stack map

enumerates all register and local variables on the stack that reference heap

objects. The roots are not objects themselves, but are references to objects.

The roots reside outside the heap and are not copied. For the purposes of the

tricolor abstraction, the roots are initially colored gray.

The copying collector walks through the list of grey objects and scans

them (see line 11 in Figure 3.10). Scanning an object involves going through

all reference fields of that object, moving the referred objects over to to-space,

and setting the field to the address newly moved to. When moving an object,

the collector leaves behind a forwarding pointer in its place that points to the

new location. This pointer ensures that an object is moved only once and

the forwarding pointer gives the to-space address of the object. Later, if the

collector encounters a forwarding pointer when processing a reference, it sets

the reference to the value of the forwarding pointer. Moving an object to to-

space turns it grey, while scanning an object makes it black. The fields of black

objects point to other objects in to-space, which are either grey or black. The

fields of grey objects point to white objects (or forwarding pointers), which

are in from-space. The traversal ends when there are no more grey objects.

55

1 function moveObject(object):
2 if object is real:
3 copy = copyObject(object)
4 copy.color = GREY
5 Q.add(copy)
6 if object.type.newVersion != null:
7 newCopy = malloc()
8 add newCopy to update log
9 newCopy.type = object.type.newVersion

10 // newCopy is currently empty
11 object.FP = newCopy
12 return newCopy
13 else:
14 object.FP = copy
15 return copy
16 if object is a forwarding pointer:
17 return object.FP

Figure 3.11: Jvolve’s modification to JikesRVM’s semi-space copying col-
lector

Objects not
affected by the

update}

New version of
updated objects.
Currently empty,

waiting to be filled

Old version of
updated objects.
With content, but
not referred to be
any other object

Figure 3.12: A view of the to semi-space immediately after garbage collection

56

Jvolve’s modified collector works in much the same way as the regular

semi-space collector just described. As shown in Figure 3.11, it differs in

how it handles objects whose class signature has changed. In this case, it

allocates a copy of the old object and an empty new object according to the

new class definition, which may have a different size compared to the old

one. The collector initializes the new object to point to the Type Information

Block (TIB) of the new type, and installs the forwarding pointer in from-

space to this new version. Next, the collector stores a pair of pointers in its

update log, one to the copy of the old object and one to the new object. The

collector continues scanning the old copy. The key fact to note is that because

forwarding pointers point to the empty new copy of the object, references to

updated types all point to these empty objects. Figure 3.12 illustrates this

situation. The old version of updated objects are filled with content while

references point to empty new versions of these objects.

After the collection completes, Jvolve adds another phase. It first exe-

cutes transformers for all classes and then for all objects. Jvolve goes through

the update log and invokes the object transformer, passing the old and new

object pair as arguments. Recall from Section 3.4.1 that the jvolveObject

functions receive an object of the old version and an object of the new ver-

sion as parameters. These parameters come from the update log, with the old

object filled with content and the new object empty waiting to be filled by

the transformer function. Once Jvolve processes all object pairs, the log is

deleted, making the duplicate old versions unreachable. As Figure 3.12 shows,

old version objects are unreachable as no references point to them, and the

next garbage collection cycle will free them. While we did not do so in our

implementation, we could put these objects in a special space and reclaim the

57

User
username
forwAddrs

String

Array

User
username
forwAddrs

String String

v131_User
username
forwAddrs

String

Array

String String

...... list of pending xforms

copy

Array

EmailAddr
user

domain

EmailAddr
user

domain

...
...

...

from space to space

Figure 3.13: Running object transformers following garbage collection

space immediately after the update. We now look at two simple updates to

illustrate how Jvolve applies object transformers.

Example 1. Figure 3.13 illustrates a part of the heap at the end of the GC

phase while applying the update from Figure 3.6 (forwarding pointers are not

shown). On the left is a depiction of part of the heap prior to the update. It

shows a User object whose fields point to various other elided objects. After

the copying phase, all of the old reachable objects are duplicated in to-space.

The transformation log points to the new version of User (which is initially

empty) and the duplicate of the old version, both of which are in to-space. The

transformer function can safely copy fields of the from object. The figure shows

that after running the transformer function, the new version’s username field

points to the same object as before, and the new version’s forwardAddresses

field points to a new array of new EmailAddress objects. The EmailAddress

constructor called from within the transformer function initialized these ob-

jects by referring to the old e-mail String values and assigning fields to point

to substrings of the given String.

58

a b c

a b cBefore

After

Figure 3.14: A look at the structure of an example linked list before and after
the update

Example 2. We explore our object transformation model by looking at an-

other example. Figure 3.14 shows an example linked list before and after

the update. In this example, a singly-linked list in the old version becomes

a doubly-linked list in the new. Figure 3.15 shows the code for the old and

new versions, and stub classes and default transformers generated by the Up-

date Preparation Tool (UPT). The update involves two classes with signature

changes: LinkedList which adds a tail field, and Node which adds a prev

field. The object transformers must set these additional fields appropriately

to create a doubly-linked list out of a singly-linked one. The jvolveObject

functions generated by default will correctly copy the data and next fields for

each node in the linked-list and correctly set head to point to the start of the

list. We modify Node’s transformer to set each node’s next node’s prev field

to point back to itself, i.e., from.next.prev = from. Setting the tail of the

list to point to the last node is trickier. We need some way to traverse the list

to get to the end. At the time we traverse the list, not all nodes might have

been transformed. In order to support this update, Jvolve provides a way

59

1 public class LinkedList {
2 class Node {
3 Node next;
4 int data;
5 }
6 private Node head;
7 }

Old version code

1 public class LinkedList {
2 class Node {
3 Node prev;
4 Node next;
5 int data;
6 }
7 private Node head;
8 private Node tail;
9 }

New version code

1 public class r0_LinkedList {
2 public LinkedList.Node head;
3 public class Node {
4 public LinkedList.Node next;
5 public int data;
6 }
7 }

Stub classes for the old version

1 public class JvolveTransformers {
2 public static void jvolveObject(
3 LinkedList.Node to, r0_LinkedList.Node from) {
4 to.prev = null; // no such field in from
5 to.next = from.next;
6 to.data = from.data;
7 }
8 public static void jvolveClass(LinkedList.Node unused) {}
9 public static void jvolveObject(

10 LinkedList to, r0_LinkedList from) {
11 to.head = from.head;
12 to.tail = null; // no such field in from
13 }
14 public static void jvolveClass(LinkedList unused) {}
15 }

Default UPT-generated transformer

Figure 3.15: An update that goes from a singly-linked to a doubly-linked list

60

for the programmer to request that an object be transformed on-demand as

the programmer traverses the list to retrieve the tail element of the list. Sec-

tion 4.1 explores this example in more detail and presents alternative object

transformation models.

3.6 Conclusion

We presented a detailed view of the Jvolve Virtual Machine. In the

next chapter we look at Jvolve’s state transformer model and a novel way

to automatically generate state transformers.

61

Chapter 4

State Transformers: Models and Automation

This chapter discusses Jvolve’s state transformation model in more

detail. We present Jvolve’s per-type object transformation model; our use

of state transformers to repair application state for specific bugfixes; and a

methodology for automating state transformer generation to ease programmer

burden.

4.1 Object Transformation Model

This section explains Jvolve’s object transformation model and com-

pares it to other alternatives by revisiting the singly-linked to doubly-linked

example introduced in Section 3.5.5.

Any dynamic updating system must convert old process state at the

time of the update to the one expected by the new version at the point it

resumes execution. The system must convert state maintained in global static

data, method stack variables, and heap data as required for the new version.

Even ignoring semantics of the application, at the very least, the system needs

to represent data correctly in the form expected by the new version.

In an object-oriented programming language like Java, data is primarily

stored as objects in the heap. An object is statically-typed1, and is an instance

1In contrast, dynamically-typed languages such as Python may change fields and methods

62

of a particular class. A dynamic updating system for Java should convert

heap objects to the new version in a class-specific manner, leading to class

or type-specific object transformation functions [64, 75]. Such a type-specific

transformation function specifies how to obtain an object of the new version’s

type given an object of the old one. As explained in Section 2.2, there exist

two main design choices on when to execute these transformation functions.

One design is to lazily transform objects. In a lazy approach, objects are

transformed when they are first accessed by the application after the update.

A lazy approach requires that application code be instrumented to check the

state of an object and transform it if necessary. The other design alternative

is to eagerly identify and transform all objects at once. For Jvolve, we

followed the eager approach because we did not want to incur the steady-

state performance overhead that comes with instrumenting code and because

we could efficiently transform the entire heap by piggybacking on garbage

collection. We first discuss design choices with the eager transformation model

and then present the lazy transformation model and how one might implement

it in Jvolve.

4.1.1 Eager transformation models

For the rest of this discussion, we assume that the interface to specify

object transformers is the jvolveObject function. This function accepts two

parameters: an object corresponding to the old version called from and an ob-

ject for the new version called to. The programmer specifies how to initialize

the to object with data from the from object. The interesting question in this

and other models is, what the types of the from and to parameters should be.

of an object over time, and objects of the same class need not be consistent.

63

We require access to the both the old and new version’s definition, yet we must

not break Java’s type system in order to utilize the strong type-safety guar-

antees provided by the language. The definitions of the from and to objects

depend on what view of the heap the developer uses during transformation

time and vice versa. In one, the programmer has access to the old version’s

code and any pointer dereference will return an object that is consistent with

the old version. We call this model the “old world” model. In the “new world”

model, the programmer has access to the new version’s code and any pointer

dereference will return an object of the new version. The old world model has

some natural advantages over the new world model. Since the old world model

presents the well-formed old heap from before the update, any code or data

access on this heap will be safe. The new world model exposes the transfor-

mation function to a heap that is yet to be populated. Dereferencing pointers

to objects whose contents are yet filled can result in incorrect data values or

null pointer exceptions. Before transformer code can access an object, the

programmer or the compiler has to ensure that its contents are correctly filled

in. In Jvolve we implemented the new world model because it integrated

naturally with our VM implementation.

Figure 4.1 shows an example of an update with two classes X and Y.

Class X has a field y pointing to an object of type Y. The update adds an ad-

ditional field each to classes X and Y. Figure 4.2 shows the object transformers

for classes X and Y in the old and new world models. In the old world model,

the from parameters are of the old types X and Y. The types of the to param-

eters are artificially constructed stub classes that correspond to the definition

of the new versions of X and Y. Note that fields of the new_X and new_Y classes,

specifically, new_X.y refers to an old version object, thus maintaining the old

64

1 public class X {
2 private Y y;
3 }
4 public class Y {
5 private int i;
6 }

1 public class X {
2 private String s;
3 private Y y;
4 }
5 public class Y {
6 private int i, j;
7 }

(a) Old version (b) New version

Figure 4.1: Example of a simple update where the field of an updated class
refers to another updated class

world invariant. Conversely, in the new world model the to parameters are

of the new version’s types while the from parameters are stub classes that

correspond to the definition of the old version. The field old_X.y refers to a

new version object.

In the new world model, the stub classes old_X and old_Y have the

same fields (both types and names) as defined in the old version and provide

access to the fields of old-version objects in a type-safe manner. These stub

classes are used by the Java-to-bytecode compiler to compile object trans-

former functions. However, as explained in Section 3.5.4, Jvolve does not

load these classes. It merely renames the old version of the class that is al-

ready loaded by the application to the names of these stubs. This renaming

eliminates the naming conflict between old and new class names. In the old

world model, the runtime replaces stub classes new_X and new_Y used while

transforming objects with the new versions of X and Y before the application

resumes execution.

The simplest meaningful transformer functions possible are those that

copy fields from the old-version object to the new one. In both models, the

65

1 // new_X.y refers to the old version
2 // The new X and Y do not exist, yet
3 class new_X { String s; Y y; }
4 class new_Y { int i, j; }
5

6 class JvolveTransformers {
7 public static void
8 jvolveObject(new_X to, X from) {
9 to.s = null; to.y = from.y;

10 }
11 public static void
12 jvolveObject(new_Y to, Y from) {
13 to.i = from.i; to.j = 0;
14 }
15 }

(a) Old World Model: Stub classes and transformers

1 // old_X.Y refers to the new version
2 // The old X and Y do not exist now
3 class old_X { public Y y; }
4 class old_Y { public int i; }
5

6 class JvolveTransformers {
7 public static void
8 jvolveObject(X to, old_X from) {
9 to.s = null; to.y = from.y;

10 }
11 public static void
12 jvolveObject(Y to, old_Y from) {
13 to.i = from.i; to.j = 0;
14 }
15 }

(b) New World Model: Stub classes and transformers

Figure 4.2: Stub classes and transformers for the update in Figure 4.1

66

Old version objects

New version objects

a b c

(a) View of the heap before running object transformers

Old version objects

New version objects

a b c

a b c

(b) View of the heap after running object transformers

Figure 4.3: Old World Model: A view of the linked lists, before and after
running transformation functions

programmer can copy both primitive and reference fields. In the old world

view, reference fields point to old version objects, while in the new world view

they point to new version objects. In the old world view, the dynamic updating

system changes every reference to an old version object to its corresponding

new one, before the application resumes execution.

Updating from a singly-linked list to a doubly-linked list We revisit

the singly-linked to doubly-linked example from Figure 3.15 to explain trans-

67

1 public static void jvolveObject(
2 r1_LinkedList to, LinkedList from) {
3 to.head = from.head;
4 Node prev = null;
5 Node current = from.head;
6 while (current != null) {
7 prev = current;
8 current = current.next;
9 }

10 to.tail = prev;
11 }

Figure 4.4: Old World Model: Object Transformers to convert a singly-linked
list into a doubly-linked list

formers in the old world and new world models. As mentioned in Section 3.5.5,

it is straightforward to set the head pointer of the doubly-linked list. Setting

the tail pointer to the last node involves traversing the linked list. In the

old world model, the list is well-formed and the transformer code obtains the

last node with a simple traversal of the list. The new world model requires

special handling since it involves traversing a list whose nodes are yet to be

populated.

We first present the old world model. Figure 4.3 shows the heap before

and after running object transformers. The heap is logically divided into

objects of the old version and those of the new version. All pointers refer to

objects of the old version. The object transformer functions given in Figure 4.4

populate the empty new version objects. The code to set the tail field of the

list involves a simple list traversal. After transforming all objects the dynamic

updating system scans the heap and converts all pointers to refer to the new

version objects and the application can resume execution. After this phase,

the heap is identical to the new world heap after transformation shown in

68

Old version objects

New version objects

a b c

(a) View of the heap before running object transformers

Old version objects

New version objects

a b c

a b c

(b) View of the heap after running object transformers

Figure 4.5: New World Model: A view of the linked lists, before and after
running transformation functions

Figure 4.5 (b).

Converting the singly-linked list to a doubly-linked list in the new world

model is a bit more involved. Figure 4.5 shows a view of the heap before and

after running object transformers in the new world model. All pointers refer

to objects of the new version. The heap is ready to be used by the application

immediately after running the transformers.

In order to set the tail of the list to point to the last node, the trans-

69

1 public static void jvolveObject(
2 LinkedList to, r0_LinkedList from) {
3 to.head = from.head;
4 Node prev = null;
5 Node current = from.head;
6 while (current != null) {
7 prev = current;
8 if (! VM.is_transformed(current)) {
9 r0_Node current_old = VM.old_version_object(current);

10 current = current_old.next;
11 } else {
12 current = current.next;
13 }
14 }
15 to.tail = prev;
16 }

(a) Explicitly traversing old and new version objects

1 public static void ensure_transformed(Object o) {
2 if (! is_transformed(o)) {
3 // The jvolveObject method corresponding to the
4 // object’s type is invoked using reflection.
5 jvolveObject(o, old_version_object(o));
6 }
7 }
8 public static void jvolveObject(
9 LinkedList to, r0_LinkedList from) {

10 to.head = from.head;
11 Node prev = null;
12 Node current = from.head;
13 while (current != null) {
14 prev = current;
15 VM.ensure_transformed(current);
16 current = current.next;
17 }
18 to.tail = prev;
19 }

(b) Explicitly transforming new version objects

Figure 4.6: New World Model: Object Transformers to convert a singly-
linked list into a doubly-linked list

70

former code needs to traverse the list to get to the end. At the time we traverse

the list, not all nodes might have been transformed, because we cannot always

control the order in which objects are transformed. There are two ways to

support this update. One is to allow the programmer to access old version

objects from the new world view by making a request to the runtime. The

other is to provide a way for the programmer to request that an object be

transformed on-demand as the programmer traverses the list to retrieve the

tail element of the list.

1. Explicitly traversing old and new-version objects. We could tra-

verse the list using both objects of the old version and objects of the new

version. It is important to note that, the system we currently have ensures

type-safety. All reference fields, in the old and new objects, point to objects

of the right type. The issue though is that fields in new objects might be null

because these objects have not been transformed yet. The VM could use meta-

data in object headers to provide an Application Programming Interface (API)

that allows a programmer to get the old-version object corresponding to a new-

version object and vice versa. The programmer should carefully traverse the

list, getting the old-version object of a new-version object, and following the

next field of the old-version object. Figure 4.6 (a) shows the object trans-

former in this model.

2. Explicitly transforming new-version objects. Another approach

would be to traverse the linked list, while ensuring that the nodes are trans-

formed before we dereference them. Figure 4.6 (b) shows the object trans-

former in this model. The inherent issue we face is that we want to enforce an

71

order in which objects are transformed. Jvolve provides an API that allows

the programmer to transform a particular object on demand. The programmer

could invoke this function ensure_transformed for each node as they traverse

the list. Note that, this VM function calls jvolveObject, the object trans-

former if an object is not yet transformed. This mechanism could potentially

lead to a cyclic dependency, i.e., transforming an object might require that the

same object already be transformed. Currently, we do not address this prob-

lem and leave it to the programmer to guarantee acyclicity. We could imagine

a more sophisticated approach that analyzes transformation functions and au-

tomatically chooses the order in which they are invoked. Alternatively, we

could automatically instrument the transformer function to make the required

API calls.

4.1.2 Discussion

While the object transformer functions written for the old world and

new world models indicate that the old world model provides a simpler logical

model for object transformation, we implemented the new world model for

simplicity of implementation and efficiency. The old world model requires

two traversals of the heap — one pass to identify objects that need to be

transformed, and another pass to scan and convert all pointers that refer to

old version objects to point to new version ones. The old version model also

requires two steps to load classes of the new version. A first step to load stub

classes to run transformers and another step to load the real classes of the new

version after the update. The new world model on the other head integrates

cleanly with our VM implementation. Jvolve renames old classes to stub

classes and loads new version classes in a single step. Jvolve’s modified

72

garbage collector walks through the heap, identifies objects that need to be

updated, creates additional copies for such objects while ensuring that all

references point to these new copies. After invoking object transformers on all

updated objects, the application can resume execution in the new version.

Our implementation of object transformers uses an extra copy of all

updated objects and adds temporary memory pressure. We could copy the

old versions to a special block of memory and reclaim it when the collec-

tion completes. We could avoid extra copies altogether by invoking object

transformer functions during collection. This approach is more complicated

because our transformer model requires recursively invoking the collector from

the transformer if a dereferenced field has not yet been processed. We also

would need to use a GC-time read barrier to follow forwarding pointers be-

fore dereferencing an object in order to determine whether an object has been

transformed.

4.1.3 Lazy transformation model

We use a stop-the-world garbage collection-based approach that re-

quires the application to pause for the duration of a full heap GC in order to

perform the update. An alternative to this model is applying object trans-

formers lazily [72, 53, 17, 64, 21]. In a lazy model, the system instruments

the application to check, at each dereference, whether an accessed object is

up-to-date and invoke its object transformer if necessary. The main drawback

of this approach is that it adds overhead during steady state execution. How-

ever, the lazy approach is useful in application contexts that cannot tolerate

the pause caused by a full heap GC.

The lazy approach can be implemented in Jvolve by performing the

73

1 function getfield(object, field):
2 value = object.field
3 new_value = ensure_transformed(value)
4 if (value != new_value):
5 setfield(object, field, new_value)
6 return new_value
7

8 function getstatic(class, field):
9 // similar to getfield

10 // uses setstatic
11

12 function aaload(array, index):
13 // similar to getfield
14 // uses aastore
15

16 function ensure_transformed(o):
17 if o.isForwardingPointer():
18 return o.ForwardedValue
19 else if o.isUpToDate():
20 return o
21 else:
22 new_o = new Object()
23 jvolveObject(new_o, o)
24 o = (forwarding pointer to new_o)
25 return new_o

Figure 4.7: Lazy object transformation model implementation

following steps. 1) At update time, invoke object transformers on all stack

local variables. 2) Maintain the invariant that any object accessed by the

application is up-to-date. We can maintain this invariant by adding read-

barrier code to all object dereferences. An object can be dereferenced in Java

only using one of the following three opcodes: getfield that returns a field

from an object; getstatic that returns the value of a global variable; and

aaload that return an array element. The read-barrier code to check whether

or not an object is transformed can use the same forwarding pointer mechanism

74

used by the garbage collector while scanning the heap. Figure 4.7 shows the

code that implements this functionality. The first time an object is accessed

after the update, it will be transformed leaving a forwarding pointer in its

place. Future accesses to the object that go through the forwarding pointer

return the transformed object and update the corresponding reference. The

forwarding pointer will be garbage collected away when no field refers to it.

While the lazy transformation model reduces pause time, it is not as

flexible as the stop-the-world eager transformation model. When using the

lazy transformation model, the programmer must take special care to ensure

that application correctness is not affected by when objects are transformed.

For example, in the update that goes from a singly to doubly-linked list, an

object’s prev field is set by its previous object’s transformer and not by itself.

No general mechanism for obtaining the previous object exists without eagerly

transforming the list. When the application accesses an object’s prev field and

the field is null, there is no way to know if it is actually null or whether it is

yet to have its value set. Thus, lazy transformation limits the types of updates

a dynamic updating system can support.

4.2 Repairing Application State

The state transformer model presented above makes the implicit as-

sumption that a to-be-updated application’s execution state is correct. In

particular, dynamic patches that are used to initialize the new version’s state

by examining the current state assume that this state is well-formed. Most

times, this assumption is correct. Perhaps the bug does not corrupt the heap,

or has not yet been exercised, or only causes incorrect input/output processing.

However, in some cases, this assumption can be faulty.

75

1 public void foo() {
2 List<String> ll = new LinkedList<String>();
3 // populate the list
4 while (...) {
5 ll.add(...);
6 }
7 if (...) {
8 // some long running loop
9 while (...) {

10 // read elements from ll
11 }
12 } else {
13 // another long running loop
14 while (...) {
15 // never use ll
16 }
17 }
18 }

(a) Object is reachable, but never accessed by the application

1 public void process(HashSet hs, Order order) {
2 hs.add(order);
3 if (...) {
4 if (order.processed) {
5 ...
6 // forgets to remove order from hs
7 }
8 } else {
9 hs.remove(order);

10 }
11 }

(b) Failing to remove objects from a collection

Figure 4.8: Examples of “memory leaks” in Java

76

Consider a memory leak. After a while, there are many reachable, but

dead objects in memory that need to be freed. Jvolve and other existing

dynamic updating systems can apply a provided fix to the code to prevent

further leaks, but DSU researchers have paid little attention to the problem

of finding and freeing existing objects once the code is fixed. In this section,

we explore source code updates that fix memory leaks in real programs, and

our extending state transformers to repair application state at update time

by cleaning up existing leaked objects. While this discussion is specific to one

bug type, we use it to gain insight to more general mechanisms for fixing heap

corruption.

4.2.1 Memory leaks in Java

In the context of a garbage collected language like Java, where unreach-

able objects are automatically reclaimed, researchers define a memory leak as

follows. Any object that is still reachable from the roots of the heap (globals

and locals) but will not be accessed by the application in the future is con-

sidered a memory leak. Consider the simple program in Figure 4.8 (a). The

function defines a local variable that points to a linked list. After populating

the list, execution reaches an if-then-else conditional. The linked list is ac-

cessed only in the true branch of the if code block. If the conditional is false,

the linked list will not be accessed again in the future and can be freed. This

example leak is not too problematic because it does not grow over time. More

problematic are leaks that continue to grow and eventually exhaust memory.

Another commonly used definition of a memory leak is semantic and

typically involves collections of objects such as an array, linked list, or hash-

map. Leaky objects are those that are reachable, but is never used by the

77

Application Patch Description of leak

jEdit SVN r8329 Application stores unnecessary information
about closed buffers that do not correspond
to any file in the file system.

SVN r5178 Code that splits a line into tokens continues
to maintain references to that line.

SVN r14027 Similar to r5178, application but maintains a
reference to an object of class TokenHandler.
A TokenHandler knows how to split a string
of a particular syntax (C, Java, Verilog, etc.)
into tokens.

Eclipse IDE Bug #115789 Application maintains reference counts to
objects in a collection. In some cases, it ne-
glects to correctly decrement this reference
count such that application logic never re-
claims the object.

Table 4.1: Memory leak fixes to real applications

application for any real purpose. Consider Figure 4.8 (b). The programmer

fails to remove from a hashset an object that is not required by application in

the future. Note that if the set is reachable, the object is not only reachable,

but also likely to be read by the program, when the hashset library re-hashes

buckets in the set. We define objects that will not used by application logic

in the future as leaks. Developers do inadvertently introduce such leaks in

applications and fix them in future versions [16, 47]. In this work, when we

dynamically apply the source patch that fixes the leak, we also remove leaky

objects as part of state transformation.

78

4.2.2 Fixing corrupt heap state for leaks

We considered a total of four leaks in two Java applications jEdit and

Eclipse IDE. jEdit is a popular text editor used by programmers. jEdit pro-

vides common features such as syntax highlighting, folding, and automatic

indentation, and advanced features such as plugin support, macro recording,

and a built-in macro language. Eclipse IDE is a widely-used multi-language

Integrated Development Environment (IDE). Eclipse is well known for its mod-

ularity and plugin architecture. While these applications are not prime can-

didates for dynamic updating, they are complex, easily available, and can

run for a long time. They exhibit the same long-running loop structure of

mission-critical always-on programs and are good candidates to demonstrate

our work.

Table 4.1 shows descriptions of four leaks, three in jEdit and one in

Eclipse IDE. For all leaks, we wrote object transformers that fixed the existing

leak in the application during update time. Jvolve is not yet robust enough

to update the patch for Eclipse IDE. Therefore we simulated the update and

the object transformer from within the application, by doing the following. We

let the application initially run as normal. After some number of iterations of

the outer loop, we invoked the object transformer code that would fix the leak,

and in future iterations we called the updated code without the leak. Jvolve

correctly updates all three jEdit patches and runs object transformers that fix

the leaks at update time. We now discuss the individual leaks and their object

transformers.

jEdit SVN r8329 Figure 4.9 shows source code patch for revision 8329

that fixes the leak and the object transformer that repairs the leak. jEdit

79

1 public class EditPane {
2 private void handleBufferUpdate(BufferUpdate msg) {
3 if(msg.getWhat() == BufferUpdate.CREATED) { ...
4 } else if(msg.getWhat() == BufferUpdate.CLOSED) { ...
5 + Buffer b = msg.getBuffer();
6 + if (b.isUntitled()) {
7 + // the buffer was a new file so I do
8 + // not need to keep its info
9 + Map carets = (Map) getClientProperty(CARETS);

10 + if (carets != null)
11 + carets.remove(b.getPath());
12 }
13 } else if(msg.getWhat() == BufferUpdate.SAVED) { ...
14 } else ...
15 }
16 }
17 }

(a) Patch applied by SVN revision 8329.
Lines 5–11 are added in the new version

1 public static void jvolveObject(EditPane ep) {
2 Map<String, CaretInfo> carets =
3 ep.getClientProperty("Buffer->Caret");
4 if (carets != null) {
5 for (String path : carets.getKeys()) {
6 Buffer b = jEdit.getBuffer(path);
7 if (b.isClosed() && b.isUnitled()) {
8 carets.remove(path);
9 }

10 }
11 }
12 }

(b) State transformer

Figure 4.9: jEdit leak and fix: SVN revision 8329

80

1 public class TokenMarker {
2 private TokenHandler tokenHandler;
3 public void markTokens(TokenHandler th) {
4 this.tokenHandler = th;
5 // lots of processing
6 ...
7 ...
8 + this.tokenHandler = null;
9 }

10 }

(a) Patch applied by SVN revision 14027.

1 public static void jvolveObject(TokenMarker tm) {
2 tm.tokenMarker = null;
3 }

(b) State transformer

Figure 4.10: jEdit update: SVN revision 14027

maintains the last cursor position of each file in a hashmap. This information

is meaningless for an “untitled buffer,” i.e., an editor buffer that does not

correspond to any file in the file system. jEdit creates an untitled buffer when

a user opens a new empty buffer. After such a buffer is closed, jEdit has

no use for its cursor position, and this information should be removed from

the hashtable. Versions prior to r8329 failed to do so, and as a result leaked

memory. Figure 4.9 (b) shows the object transformer function that repairs

the leak. The function walks though all keys in the CARETS hashtable, and

removes those entries that correspond to untitled buffers.

jEdit SVN r5178 and r14027 The leaks fixed by versions r5178 and r14027

and similar and occur in the same function, but to two different fields. We

only show the code for version r14027 here. Figure 4.10 shows the source patch

81

1 class Editor { int refCount; }
2

3 class History {
4 Editor editor;
5 void dispose() {
6 this.editor = null;
7 }
8 }
9

10 public class NavigationHistory {
11 ArrayList<History> history;
12 ArrayList<Editor> editors;
13

14 void disposeEntry(History h) {
15 if (h.editor == null) return;
16 h.editor.refCount--;
17 if (h.editor.refCount == 0)
18 editors.remove(h.editor);
19 h.dispose();
20 }
21

22 void updateNavigationHistory() {
23 for (History h : history)
24 if (...) {
25 history.remove(h);
26 - h.dispose();
27 + disposeEntry(h);
28 }
29 }
30 }

Figure 4.11: Eclipse IDE memory leak patch: Bug #115789

82

1 public static void jvolveObject(NavigationHistory nh) {
2 for (Editor e : nh.editors)
3 e.refcount = 0;
4 for (History h : nh.history)
5 if (h.editor != null)
6 h.editor.refcount++;
7 for (Editor e : nh.editors)
8 if (e.refcount == 0)
9 nh.editors.remove(e);

10 }

Figure 4.12: State transformer that fixes Eclipse IDE memory leak bug #11-
5789

and object transformer for this leak. jEdit calls function markTokens when it

needs to split a string into tokens based on the type of the file being edited.

Each file type (C, Java, Verilog, etc.) has special logic to split text in a line,

embedded in an object of type TokenHandler. The leaky jEdit version fails

to set the field TokenMarker.tokenHandler to null. The object transformer

is simple, it sets the leaky field to null. It is safe to execute the transformer

only when the markTokens function is not active on stack. Since the update

changes markTokens, it will not be active at a DSU safe point.

Eclipse IDE #115789 Figure 4.11 shows the source for a memory leak in

Eclipse IDE. In the class NavigationHistory, the IDE maintains two lists:

one of History objects called history, and another of Editor objects called

editors. Each History object has an editor field. Thereby, each object in

the history list point to an object in editors list. An editor object may remain

in the editors list only as long as it is pointed to by some history object. To

enforce this property, the program maintains a reference count field with each

editor object. This field represents the number of history objects pointing

83

to that particular editor object. Whenever the application removes a history

object, it should decrement the reference count of the editor object that the

history object points to, and remove the editor object from the editors list

if the count is zero. Function disposeEntry implements this functionality.

In one instance, the programmer failed to follow this procedure, causing a

memory leak. Figure 4.12 shows the object transformer that frees the leak at

update time. The transformer walks though all history objects, recomputes

reference counts for editor objects, and frees editor objects with a reference

count of zero.

4.3 Automating State Transformer Generation

Thus far, we have relied on the programmer to provide heap transformer

functions. In this section, we explore techniques to automate generation of the

transformer based on the patch to ease programmer burden.

This section presents a technique that starts from a patch and automat-

ically produces state transformers that repair application state. Our method-

ology takes into account the code fix for a particular heap-corrupting bug, and

uses a combination of dynamic and static analysis to discover predicates on

heap objects. We employ the garbage collector to invoke object transformers

on relevant heap objects satisfying the discovered heap predicates. While our

focus is on memory leaks, our technique is general and we have applied it to

other sorts of conditional heap updates as well.

Our technique works as follows. Suppose we have a Java program in

which field f of class C is the source of a memory leak, and the fix is to insert

a line x.f = null; in some method foo. Figure 4.13 shows the patch for this

method. The new version sets field f to null causing the object pointed to by f

84

1 public void foo() {
2 C x;
3 ...
4 if (...) {
5 ...
6 } else {
7 ...
8 + x.f = null;
9 }

10 }

Figure 4.13: Example of a simple patch that fixes a memory leak

to be garbage collected and freed. Given this fix, we would like to dynamically

update the program to correct the code of foo. The patch prevents further

leaks, and our object transformer needs to modify the existing leak to free

already-leaked objects. We use a combination of dynamic and static analysis

to automatically generate the object transformer function.

The object transformer function must find existing objects x of class

C (or a subclass of C) and assign null to x.f. But we must be careful to

only null out x.f if that object is actually leaked; if we null out x.f while

the program is still using it, then the update will introduce incorrect behavior

or a crash. We thus need to distinguish leaked objects from in-use ones. In

Figure 4.13, the fixed version of foo introduces the statement x.f = null;

on line 8. The leaky objects consist of all objects o that have been bound to

x during execution (of the old program) that have reached this line. If the fix

had been in place, x.f = null would have been executed, and thus the f field

of these objects would have been set to null. All other objects of class C (or

subtypes of C) that have not been bound to x at line 8 are not leaking, and so

we should leave their f field alone. We call these the non-leaky objects.

85

The problem with literally implementing this idea is that the bug is

discovered, and the fix discerned, only after the program is deployed. At this

point, the patch has no information about which objects reached line 8 and

which did not. To remedy this problem, as part of update preparation, we

attempt to generate a heap predicate offline, that unambiguously distinguishes

the leaky and non-leaky objects. Then we generate a dynamic patch to correct

the heap:

1 for all objects x of class D < C:
2 if heap_pred(x):
3 x.f = null

The code to fix a particular object’s state (line 3) comes from the code

patch and is applied to all objects of type D satisfying the heap predicate.

We execute this code at update time, together with other object and class

transformers. We use a modified version of the Jvolve garbage collector to

traverse the heap to find the matching objects and null their fields.

We generate the heap predicate by performing a dynamic analysis. We

run the old program and mark all objects of class C that reach the said line.

In our current implementation, we modify the concerned class and explicitly

add a boolean field named __marked. To mark an object, we set this field

to true. In addition, each time program execution reaches a legal update

point, we dump the heap. We use the Sun JVM’s heap dumping support. Our

goal is to now discover a heap predicate that distinguishes marked objects

from the unmarked ones, i.e., (heap-predicate(x) == true) if and only if

(marked(x) == true). We do this by feeding information about marked ob-

jects to an invariant detection tool. For our work, we use Daikon, a tool that

discovers dynamic invariants in a running program and across multiple runs

86

of the program [33]. We construct a special Java program and run it through

Daikon. The program contains a function whose parameters match the sig-

nature of the concerned class. The main method reads each marked object

from the snapshot and calls this function with the fields of the object as pa-

rameters. We control how deep to look for invariants by passing the contents

of referred objects, objects pointed by them, and so on. We also pass the

type and count of references pointing to marked objects. We run this Java

program though Daikon which infers invariants among the parameters of our

specially constructed function. The invariants that hold across all runs can be

used as predicates to identify marked objects. However, we can use only those

predicates that definitely do not hold for any unmarked object. To do so,

we negate each predicate identified by Daikon and check whether the negated

predicate holds for every unmarked object in all heap snapshots. A predicate

that is satisfied by every marked object and is not satisfied by even a single

unmarked object can be used at runtime to distinguish marked and unmarked

objects. We use the conjunction of all predicates identified by this process as

our heap predicate to identify leaky objects.

There are two caveats that we need to keep in mind. First, this is

a dynamic analysis, so we need adequate test coverage to be convinced that

the predicates we have inferred are general. Second, we need to consider that

some objects should be unmarked if the program subsequently writes to the

field that the patch modifies. In the example in Figure 4.13, the absence of

line 8 in the old version is a leak. However, it might be the case that there is a

future legitimate write to field f that makes the object non-leaky. Therefore,

whenever there is a write to field f, we unmark the concerned object, i.e.,

change its identification to non-leaky. In general, whenever a leak occurs in

87

the old version we mark the concerned object as leaky, and after any access to

that object that invalidate its leaky state we mark it as non-leaky.

This approach can be generalized for other simple patches. For ex-

ample, a patch that either adds a boolean field in the new version, or fixes

incorrect setting of the field in the old version. In both cases, we run the new

version and discover dynamic invariant relationships between the value of the

concerned boolean field and other objects in the heap. We use this discovered

predicate to set the new field’s value with the following state transformer:

1 for all objects x of class D < C:
2 if heap-pred(x):
3 x.boolean_field = true

4.3.1 Invariants discovered from real fixes

We applied this methodology to three real fixes and present the auto-

matic state transformers we obtained. Two of them are similar, and are for

the memory leaks fixed in jEdit by SVN revisions 5178 and 14027, mentioned

in Table 4.1. The other patch is from the Bittorent client Azureus. The new

version adds a boolean field isExpanded for a GUI element.

jEdit fixes in SVN revision 5178 and 14027 Figure 4.10 shows the

patch and transformer for the leaky field tokenHandler. For this version, we

discover that the following heap predicate distinguishes leaky objects from the

non-leaky ones: (o.tokenHandler != null). This predicate validates our

transformer in Figure 4.10 (b), which sets all leaky fields to null.

88

Adding a new boolean field in Azureus The version number of the fix

is a04dc20b6b in our Git repository of Azureus’ CVS repository. This bugfix

corresponds to commits made around 2010/02/14. The new version adds a

field isExpanded to class BaseMdiEntry. The GUI element corresponds to

a tree that displays data, and the isExpanded field specifies the state of a

particular node in the tree. For this update, the default transformer generated

by our Update Preparation Tool (UPT) would set the boolean field to false.

However, a dynamic analysis on the new version of the application produces

the following invariants among objects of type BaseMdiEntry:

1 this.iconBarEnabler.visible == this.sidebar.visible
2 this.isExpanded == this.soParent.paintListenerHooked

The second invariant set the value of the isExpanded field in the object

transformer. Stephen Magill collaborated on studying this fix, ran it through

Daikon, and discovered the above heap predicate.

4.4 Conclusion

In this chapter, we presented Jvolve’s new world state transformation

model in comparison to an alternative old world model. We show that the

models are similar and more flexible than lazy models. While the new world

model makes implementation simpler and efficient, the old world model leads

to more elegant transformation functions.

We extend our model to more sophisticated transformers with logic

dependent on the state of each object. We use such transformers to repair

application state that the old program incorrectly created. To simplify creation

of such transformers, we introduce a dynamic analysis technique to discover

89

predicates that describe and distinguish heap objects that need repair. We

use the discovered invariants to automatically generate state transformers,

thereby reducing some of the effort required of the programmer. We also

use these discovered invariants to help the programmer gain confidence in the

correctness of their own transformer functions.

90

Chapter 5

Evaluation

To evaluate Jvolve, we used it to update three open-source servers

written in Java: Jetty webserver [88], JavaEmailServer [23], and CrossFTP

server [76]. These programs belong to a class that should benefit from DSU

because they typically run continuously. DSU would enable deployments to

incorporate bug fixes or add new features without having to halt currently-

running instances or create duplicate instances with built-in special purpose

redirection functionality.

We explored updates corresponding to releases made over roughly one

to two years of each program’s lifetime. None of these programs were main-

tained with DSU support in mind. Of the 22 updates we considered, Jvolve

could support 20 of them—the two updates we could not apply changed classes

with infinitely-running methods, and thus no safe point could be reached. To

our knowledge, no existing DSU system for Java could support all these up-

dates; indeed, previous systems with simple support for updating method

bodies would be able to handle only 9 of the 22 updates. Although Jvolve

cannot support every update, it would substantially reduce required downtime.

It is the first DSU system for Java that has been shown to support changes to

realistic programs as they occur in practice over a long period of time.

In the rest of this chapter, we first examine the performance impact of

Jvolve, and then look at updates to each of the three applications in detail.

91

5.1 Performance

Jvolve’s impact on performance can be divided into the following.

1) the steady state impact of implementing dynamic updating support, 2)

the pause in application execution to perform the update, and 3) the cost

of recompiling updated and invalidated methods upon resuming execution.

The latter is very hard to measure and can be grouped with the steady state

performance impact. Our experiments show that the main performance impact

of Jvolve is the pause time while applying an update. Once updated, the

application eventually runs without further overhead. To confirm this claim,

we measured the throughput and latency of two Jetty versions while running

on stock JikesRVM and on Jvolve after dynamically updating to the next

version. Section 5.1.1 shows that the performance of these configurations is

essentially identical.

The cost of applying an update is the time to load any new classes,

invoke a full heap garbage collection, and apply the transformation methods

on objects belonging to updated classes. Roughly, the time to suspend threads

and check that the application is at a safe-point is less than a millisecond, and

classloading time is usually less than 20ms. The update disruption time is

primarily due to the GC and object transformers, and is proportional to the

size of the heap and the fraction of objects being transformed. We wrote a

simple microbenchmark to measure these overheads. The results reported in

Section 5.1.2 show that object transformation is the dominant cost.

We conducted all our experiments on an Intel Core 2 Quad machine

running at 2.4 GHz machine with 2 GB of RAM. The machine ran Ubuntu 7.10

on Linux kernel version 2.6.22. We implemented Jvolve on top of JikesRVM

(SVN r15532) and built a FullAdaptiveSemiSpace configuration of the VM.

92

Config.
Throughput (MB/s) Latency (ms)

Median Quartiles Median Quartiles

JikesRVM 122.437 121.44–123.32 0.442 0.394–0.496
Jvolve 121.308 121.12–121.41 0.349 0.341–0.351
Jvolve upd. 121.242 121.09–121.29 0.345 0.341–0.349

Jikes RVM Jvolve Jvolve (updated)

Configuration

121

122

123

124

T
hr

ou
gh

pu
t (

M
B

/s
) Throughput

0.30

0.35

0.40

0.45

0.50

L
atency (m

s)

Latency

Figure 5.1: Throughput and latency measurements for Jetty webserver ver-
sion 5.1.6 showing median and semi-interquartile range

The FullAdaptive configuration means that the VM’s code is compiled at the

highest level of optimization while creating the VM’s boot image (Full) and the

application code is compiled adaptively adaptively (Adaptive) [1]. In adaptive

compilation, the VM baseline compiles an application method the first time it

is executed, and recompiles the method at increasing levels of optimization as

it gets invoked more often. The SemiSpace configuration refers to JikesRVM’s

semi-space garbage collector.

5.1.1 Jetty Webserver performance

To see the effect of updating on application performance, we measured

Jetty under various request rates using httperf, a webserver benchmarking

tool [58], and determined Jetty’s saturation rate to be roughly 800 new con-

93

nection requests/second. We then measured Jetty’s performance by issuing

connections at this rate. Each connection makes 5 serial requests for a 40

Kbyte file. Httperf reports average throughput and average per-request la-

tency over a 60 second period. We ran this experiment 21 times and report

the median and quartiles of the throughput and latency reports. With 21 runs,

the range between the quartiles serves as a 98% confidence interval [71]. In

order to eliminate network traffic effects, we ran the server on two cores of a

quad-core machine and the client on another core.

Figure 5.1 shows our results in tabular form and plotted graphically.

The second and third columns of the table report the median throughput and

the range between the two quartiles. The third column and fourth column

report the median latency and the inter-quartile range. The first and sec-

ond rows illustrate the performance of Jetty version 5.1.6 running on stock

JikesRVM and Jvolve, respectively. The third row shows the performance

on Jvolve of Jetty 5.1.6 dynamically updated from version 5.1.5 prior to

the start of the experiment. The performance of the two Jvolve configura-

tions are statistically indistinguishable. The two configurations’ corresponding

inter-quartile ranges largely overlap. The performance of Jvolve is also quite

similar to the performance of stock JikesRVM. There are many small differ-

ences between Jvolve and the stock implementation that change VM code

size, code layout, and garbage collection behavior. These differences may im-

pact performance directly and they may indirectly affect other elements of the

VM, such as the timing of garbage collections and JIT optimizations (such

indirect effects make VMs notoriously difficult to benchmark [15, 59]).

94

5.1.2 Microbenchmark performance

The two dominant factors that determine Jvolve update time are the

time to perform a GC, determined by the number of objects, and the time to

run object transformers, determined by the fraction of objects being updated.

To measure each cost, we devised a simple microbenchmark that creates an

array of objects and transforms a specified fraction of these objects when a

dynamic software update is triggered. The microbenchmark has two simple

classes, Change and NoChange. Both contain three integer fields, and three

reference fields that are always null. The update adds an integer field to

Change. The user-provided object transformation function copies the existing

fields and initializes the new field to zero. We measure the cost of performing

an update while varying the total number of objects and the fraction of objects

of each type. The number of objects is the maximum that can fit in heap

sizes 32, 64, 128 and 256 MB. Note that JikesRVM’s heap includes VM data

structures as well. We measure the running time in a generous heap, five

times the minimum required size, such that the only collections are those DSU

triggers. We report the median of 21 runs.

Table 5.1 shows the elapsed time while varying the number of total

objects and the fraction of the objects that are updated. The variance was

insignificant, so we do not report it. The first group of rows reports garbage

collection time, the second group reports the time to transform all updated

objects, and the final group reports the total update time. While the total time

includes the time to load and install the updated classes, synchronize running

threads, and find a DSU safe point, it is roughly equal to the sum of GC time

and transformation time. The first column of the table shows the number of

objects in the test, and the second column the heap size, which is five times

95

#
ob

je
ct

s
H

ea
p

Fr
ac

ti
on

of
up

da
te

d
ob

je
ct

s
in

’0
00

s
(M

B
)

0%
10

%
20

%
30

%
40

%
50

%
60

%
70

%
80

%
90

%
10

0%

28
0

16
0

G
ar

ba
ge

co
lle

ct
io

n
ti

m
e

(m
s)

78
81

83
89

99
10

3
10

8
11

3
11

3
12

0
12

0
77

0
32

0
14

8
16

5
18

1
19

5
21

3
22

3
23

7
24

9
26

2
26

9
27

8
1,

76
0

64
0

31
3

34
7

38
2

41
6

44
9

47
8

50
6

53
4

55
8

58
3

60
1

3,
67

0
1,

28
0

61
5

69
4

76
3

83
3

90
0

96
5

10
19

10
76

11
29

11
81

12
17

28
0

16
0

R
un

ni
ng

tr
an

sf
or

m
at

io
n

fu
nc

ti
on

s
(m

s)

0
13

23
34

43
54

62
74

84
93

10
4

77
0

32
0

0
33

63
91

11
6

14
5

17
3

20
1

23
1

26
2

29
2

1,
76

0
64

0
0

77
14

3
20

7
26

9
33

3
39

7
46

4
53

4
60

4
67

4
3,

67
0

1,
28

0
0

16
0

29
9

42
9

56
0

69
3

82
7

97
5

11
19

12
63

14
05

28
0

16
0

T
ot

al
D

SU
pa

us
e

ti
m

e
(m

s)

82
99

10
9

12
8

14
7

16
1

17
4

19
2

20
2

21
8

22
8

77
0

32
0

15
3

20
2

24
9

29
1

33
4

37
2

41
4

45
5

49
8

53
5

57
6

1,
76

0
64

0
31

6
42

9
53

0
62

7
72

3
81

6
90

8
10

02
10

97
11

91
12

81
3,

67
0

1,
28

0
61

8
85

9
10

65
12

69
14

66
16

63
18

50
20

54
22

53
24

48
26

27

T
ab

le
5.

1:
M

ic
ro

b
en

ch
m

ar
k

re
su

lt
s:

J
v
o
l
v
e

u
p

d
at

e
p
au

se
ti

m
e

(i
n

m
s)

fo
r

va
ri

ou
s

h
ea

p
si

ze
s

96

0 20 40 60 80 100

Change fraction (%)

0

500

1000

1500

2000

2500

T
im

e
(m

s)

(1) DSU time (2 + 3)
(2) GC time
(3) Running transformers

Figure 5.2: Microbenchmark pause times with a heap size of 1280 MB con-
taining 3.67 million objects

the minimum heap size to run the microbenchmark. Columns 4 though 14

show pause times for varying fractions (from 0% to 100%) of updated objects.

To shed light on the results in the table, Figure 5.2 plots collection

time, transformer time, and total update time for the microbenchmark with

3.67 million objects in a 1280 MB heap. The figure shows that the costs of

garbage collection and transformation increase as a function of the number of

changed objects. The slope of the “GC time” line illustrates the cost to deal

with one object of the update type. This cost includes creating an additional

copy of the transformed object; creating an update log entry with a pointer to

the old and new copy; and caching a pointer to the old copy from the new copy.

The slope of the “Running transformers” line illustrates the cost of accessing

the update log and actually running the transformer for one object. This extra

processing to handle transforming objects increases the total pause time with

97

all objects updated by roughly four times compared to the pause time with

no object updated. The “Running Transformers” line is steeper than the “GC

time” line, revealing that the cost of running transformers is higher than the

extra copying cost incurred during GC.

Transformations are more expensive than standard copying GC. The

GC uses a highly optimized memcopy like code, whereas our transformer func-

tions use reflection to look up the jvolveObject function of the right type,

and this function copies one field at a time. One optimization would be to

eliminate the log by copying the old and new objects to their own space and

walking through and transforming each object. The cost of reflection could be

reduced by caching the lookup, but even then a näıvely compiled field-by-field

copy is much slower than the collector’s highly-optimized copying loop.

5.2 Applications

We now take a look at our three applications in detail. We present

their application structure, changes between versions, our success at updating

them, and some non-trivial transformer functions.

5.2.1 Jetty webserver

Jetty is a popular webserver written in Java. It supports static and

dynamic content and can be embedded within other Java applications. It is

used by various popular projects such as Eclipse, Google App Engine, and

the Hadoop map-reduce framework [45]. JikesRVM, and thus Jvolve, is not

able to run the most recent versions of Jetty (6.x). Therefore we considered 11

versions, starting at 5.1.0, released in November, 2004 through 5.1.10, released

in January, 2006. Version 5.1.10 contains 317 classes and about 45,000 source

98

Ver. Date SLOC
classes

added

changed

classes methods fields

add del chg add del

5.1.0 Nov 2004 42,981
5.1.1 Dec 2004 43,073 0 14 4 1 38/0 0 0
5.1.2 Jan 2005 43,277 1 5 0 0 12/1 0 0
5.1.3* Apr 2005 43,612 3 15 19 2 59/0 10 1
5.1.4 Jun 2005 43,578 0 6 0 4 9/6 0 2
5.1.5 Nov 2005 44,027 0 54 21 4 112/8 5 0
5.1.6 Nov 2005 43,948 0 4 0 0 20/0 5 6
5.1.7 Dec 2005 44,081 0 7 8 0 11/2 9 3
5.1.8 Dec 2005 44,082 0 1 0 0 1/0 0 0
5.1.9 Dec 2005 44,084 0 1 0 0 1/0 0 0
5.1.10 Jan 2006 44,102 0 4 0 0 4/0 0 0

Table 5.2: Summary of updates to Jetty

lines of code (SLOC) (lines of code excluding comments and blank lines, as

reported by the sloccount tool [87, 89]).

Table 5.2 shows a summary of the changes in each update. For each

version, the first three columns list the version number, release date and SLOC.

For versions 5.1.1 through 5.1.10, each row tabulates the changes relative to

the prior version. The fourth column shows the number of classes that the new

version added. The fifth column shows the number of classes that contained

changes from the previous version. Columns 6 though 10 enumerate changes

such as the addition, deletion and modification of methods; and the addition

and deletion of fields. For the eighth column listing changed methods, the

notation x/y indicates that x+ y methods were changed, where x changed in

body only, and y changed their type signature as well. For dynamic updating

systems that only support changes to method bodies, only the first and last

three of the ten updates could be supported, since the rest either change

method signatures and/or add or delete fields.

99

1 // There are different listeners for various
2 // virtual hosts Each listener has multiple
3 // threads
4 public class HttpListener {
5 public void run() {
6 while (true) {
7 if (job == null)
8 wait();
9 if (job != null)

10 handle(job);
11 }
12 }
13 }
14

15 // Maps a collection of HttpListener objects
16 // which generates requests and HttpContext
17 // objects which maintain collection of
18 // HttpHandlers
19 public class HttpServer {
20 public void start() {
21 for (HttpContext c : contexts) {
22 c.start();
23 }
24 for (HttpListener l : listeners) {
25 l.start();
26 }
27 }
28

29 public static void main(String args[]) {
30 HttpServer server = new HttpServer();
31 HttpContext context = server.getContext();
32 context.addHandler(...);
33 server.addListener(...);
34 server.start();
35 }
36 }

Figure 5.3: Jetty webserver code: High level organization

100

Figure 5.3 shows the high-level organization of the application. The

main class of the application HttpServer services Hypertext Transfer Protocol

(HTTP) requests by maintaining a map between a collection of HttpListener

objects and HttpContext objects. The HttpListener objects listen for client

requests. The application supports virtual hosts (multiple websites on the

same server listening possibly at different addresses) by having a HttpListe-

ner object for each virtual host. The listener also maintains a fixed pool of

threads to service client requests, thereby avoiding thread creation overhead

for each request. The application uses complex producer-consumer synchro-

nization between the client sockets and thread pools. HttpContext objects

provide context such as filesystem path prefix, classpath, and resource lo-

cation for HttpHandler objects. Each handler supports a different type of

request—regular file request, running servlets and web applications, returning

error messages, and so on. When the server is idle, threads in the thread pools

wait to be woken up by listeners which wait on client sockets.

5.2.1.1 State transformer functions in Jetty

Between the default class and object transformers the Update Prepara-

tion Tool (UPT) generated and those we wrote by hand, we successfully wrote

dynamic updates to all versions of Jetty that we examined. The update to

version 5.1.2 demonstrates the usefulness of automatically generated default

transformers in the common case. Version 5.1.2 changes the access protection

of method setHttpContext in class HttpResponse to public. This method

is now called by methods outside class HttpResponse and Jvolve correctly

loads these method bodies to update the application. Since the update changes

the class signature of HttpResponse, the entire class has to be reloaded again,

101

1 import org.mortbay.http.HttpResponse;
2 import org.mortbay.http.r_5_1_1_HttpResponse;
3

4 public final class JvolveTransformers {
5 public static void jvolveObject(HttpResponse to,
6 r_5_1_1_HttpResponse from) {
7 to._status = from._status;
8 to._reason = from._reason;
9 to._httpContext = from._httpContext;

10 }
11 public static void jvolveClass(HttpResponse unused) {
12 HttpResponse.log = r_5_1_1_HttpResponse.log;
13 HttpResponse.__100_Continue =
14 r_5_1_1_HttpResponse.__100_Continue;
15 HttpResponse.__101_Switching_Protocols =
16 r_5_1_1_HttpResponse.__101_Switching_Protocols;
17 ...
18 HttpResponse.__505_HTTP_Version_Not_Supported =
19 r_5_1_1_HttpResponse.__505_HTTP_Version_Not_Supported;
20 HttpResponse.__507_Insufficient_Storage =
21 r_5_1_1_HttpResponse.__507_Insufficient_Storage;
22 HttpResponse.__statusMsg =
23 r_5_1_1_HttpResponse.__statusMsg;
24 HttpResponse.__Continue =
25 r_5_1_1_HttpResponse.__Continue;
26 }
27 }

Figure 5.4: UPT-generated transformers for the update to Jetty v5.1.2

and Jvolve must run class and object transformers for this class. Figure 5.4

shows the default transformer that UPT generated. In this situation, where

there is no semantic change, the default transformers correctly set the fields

in the new version. Moreover, the fact that the HttpResponse class has over

fifty fields make the default transformers extremely useful.

We now describe updates where default transformers were not sufficient.

In Version 5.1.3 class NCSARequestLog added two boolean fields _logLatency

and _logCookies. _logLatency specifies whether the application should in-

102

1 public class HttpContext {
2 private List
3 _systemClasses;
4 }

1 public class HttpContext {
2 private String[]
3 _systemClasses =
4 new String [] {...};
5 }

(a) Version 5.1.5 (b) Version 5.1.6

1 public static void jvolveObject(
2 HttpContext to, r_5_1_5_HttpContext from) {
3 to._systemClasses = null;
4 }

(c) Default transformer

1 public static void jvolveObject(
2 HttpContext to, r_5_1_5_HttpContext from) {
3 if (from._systemClasses == null) {
4 to._systemClasses = null;
5 } else {
6 to._systemClasses =
7 new String[from._systemClasses.size()];
8 int i = 0;
9 for (Object o : from._systemClasses) {

10 to._systemClasses[i] = (String) o;
11 i++;
12 }
13 }
14 }

(d) User generated transformer

Figure 5.5: Object transformer from Jetty version 5.1.5 to 5.1.6

103

clude the latency to process HTTP requests when it logs information about a

request, and _logCookies controls whether or not that application logs cook-

ies information. The default transformer sets these boolean fields to false.

However, the actual values to set these fields to depend on the configuration

parameters when running the new version. In the same update, Class Pool

which manages a pool of threads to handle HTTP requests adjusts the num-

ber of threads based on system load, added a private field _lastShrink to

store the time the number of threads were last shrunk. Jetty uses this field to

prevent shrinking available threads frequently. Setting this field to the default

value of zero should not pose any major problems because this field will have

the correct time the next time the pool is shrunk.

The update from version 5.1.5 to 5.1.6 changed the type of two fields

_systemClasses and _serverClasses from List in the old version to Str-

ing[] in the new, in class HttpContext. Figure 5.5 shows the changes to

one of these fields. In Figure 5.5 (c), UPT’s default transformer sets the

field _systemClasses to null (similar to the example with JavaEmailServer,

Figure 3.6). Since the new version’s field declaration (Figure 5.5 (b)) already

declares the value of these fields, the developer writing to object transformer

has to decide whether to use this value or convert the value stored in the

old version’s list into a String array. We choose the latter option, shown in

Figure 5.5 (d).

5.2.1.2 Reaching a safe point in Jetty

For the updates we considered, we tried to study how our safe point

restrictions (Section 3.5.2) inhibited a dynamic update. Other than the update

to 5.1.3, all versions immediately reached a safe point every time, with no need

104

U
pd

.
N

um
be

r
of

#
m

et
ho

ds
no

t
al

lo
w

ed
on

st
ac

k,
du

e
to

N
um

be
r

of

to
R

ea
ch

ed
m

et
ho

ds
at

cl
as

s
m

et
ho

d
in

di
re

ct
re

st
ri

ct
ed

ve
r.

sa
fe

po
in

t?
ru

nt
im

e
up

da
te

s
bo

dy
m

et
ho

d
T

ot
al

m
et

ho
ds

up
da

te
s

up
da

te
s

w
/o

O
SR

w
/

O
SR

5.
1.

1
al

w
ay

s
13

78
(3

76
)

26
/4

9
7/

12
20

/2
9

53
/9

0
(1

7)
67

10
5.

1.
2

4/
5†

13
74

(3
75

)
25

/2
5

3/
5

35
/4

3
63

/7
3

(3
5)

67
4

5.
1.

3
0/

5∗
13

74
(3

75
)

32
6/

38
2

4/
6

42
/4

5
37

0/
43

3
(9

7)
37

3
23

5.
1.

4
al

w
ay

s
13

84
(3

74
)

82
/8

2
5/

6
15

/1
6

10
1/

10
4

(2
4)

10
1

10
5.

1.
5

al
w

ay
s

13
80

(3
72

)
14

/8
0

39
/6

0
13

/1
5

62
/1

55
(1

7)
62

60
5.

1.
6

3/
5†

13
94

(3
78

)
20

3/
21

9
3/

3
16

/1
9

22
2/

24
1

(4
0)

22
3

20
5.

1.
7

al
w

ay
s

13
94

(3
80

)
18

6/
18

7
1/

2
53

/6
9

23
9/

25
8

(7
4)

24
3

12
5.

1.
8

al
w

ay
s

14
02

(3
79

)
0/

0
1/

1
0/

0
1/

1
(1

)
1

1
5.

1.
9

al
w

ay
s

14
02

(3
79

)
0/

0
0/

1
0/

0
0/

1
(0

)
0

0
5.

1.
10

al
w

ay
s

14
02

(3
79

)
0/

0
4/

5
0/

0
4/

5
(2

)
6

4

† R
es

tr
ic

te
d

m
et

ho
d
H
t
t
p
C
o
n
n
e
c
t
i
o
n
.
h
a
n
d
l
e
N
e
x
t
(
)

w
as

ac
ti

ve
∗ R

es
tr

ic
te

d
m

et
ho

d
T
h
r
e
a
d
e
d
S
e
r
v
e
r
.
a
c
c
e
p
t
S
o
c
k
e
t
(
)

w
as

al
w

ay
s

ac
ti

ve

T
ab

le
5.

3:
Im

p
ac

t
of

sa
fe

p
oi

n
t

re
st

ri
ct

io
n
s

on
u
p

d
at

es
to

J
et

ty

105

of return barriers.

For each version, starting at 5.1.0, we ran Jetty under 20% load (160

connections per second from our httperf experiments). After 30 seconds we

tried to apply the update to the next version; if a safe point could not be

immediately reached, we deemed the attempt as failed. We tried five such

attempts for each version, starting up from the server from scratch for each

attempt. The results are presented in Table 5.3. Column 2 shows the number

of times out of five such runs where the application reached a safe point. The

methods whose presence on a thread stack precluded the application from

reaching a safe point are mentioned below the table. For the update to 5.1.3,

the offending method was always active because it contained an infinite loop.

The other updates either always succeeded, or did after a small number of

retries.

We could not apply the update to version 5.1.3 (denoted with an as-

terisk in the table) because Jvolve was never able to reach a safe point. The

update modified ThreadedServer.acceptSocket(), a method that waits for

a connection from the client, and this method is nearly always on stack. We

installed a return barrier that is triggered when acceptSocket returns, but

this barrier is not sufficient to perform the update since the main methods of

several threads were themselves modified. For example, we also install a return

barrier on PoolThread.run(), but this barrier is never triggered because this

method never becomes inactive.

Column 3 contains the total number of methods in the program at

runtime, where the number in parentheses is the number of those which the

compiler inlined when using aggressive optimization. This provides an upper

bound on the effect of inlining in reaching a safe point. The next group

106

of columns contains the restricted method set. Each column in the group

specifies the number of methods loaded at run time by the VM, followed by

the total number of methods in that category in the program. The first column

in this group is the number of methods in classes involved in a class update.

Recall that when a class is updated, say by adding a field, all its methods are

considered restricted (see section 3.5.2). The second column in this group is

the number of methods whose bodies are updated, the third is the number of

category (2) or indirectly updated methods, and the fourth sums these, with

the number of methods that were inlined written in parentheses. The final

two columns list the total number of methods in the restricted set; they differ

from the first number in the fourth column by the number of inlined callers

of the restricted methods that were not already restricted. The final column

lists the actual number of restricted methods when Jvolve’s OSR capability

is enabled.

The table shows that both indirect method calls and inlining signif-

icantly add to the size of the restricted set. Inlining though, is small by

comparison, because all callers of an updated class’s methods are already in-

cluded in the indirect set. Therefore, inlining these methods adds no further

restriction. In most cases OSR support dramatically reduces the number of

restricted methods and increases the likelihood of reaching a DSU safe point.

Interestingly, having a greater number of restricted methods overall does not

necessarily reduce the likelihood that an update will take effect; rather, it

depends on the frequency with which methods in this set are on the stack.

107

Ver. Date SLOC

classes # changed

add del classes methods fields

add del chg add del

1.2.1 Dec 2002 2,841
1.2.2 Feb 2003 2,841 0 0 3 0 0 3/0 0 0
1.2.3 Jul 2003 2,924 0 0 7 0 0 14/2 12 0
1.2.4 Sep 2003 2,961 0 0 2 0 0 4/0 0 0
1.3* Oct 2003 2,305 4 9 2 11 3 6/9 12 5
1.3.1 Oct 2003 2,307 0 0 2 0 0 4/0 0 0
1.3.2 Nov 2003 2,359 0 0 8 4 2 4/2 3 1
1.3.3 Nov 2003 2,368 0 0 4 0 0 3/0 0 0
1.3.4 Feb 2004 2,447 0 0 6 2 0 6/0 2 0
1.4 Jul 2004 2,529 0 0 7 6 1 4/1 6 0

Table 5.4: Summary of updates to JavaEmailServer

5.2.2 JavaEmailServer

For JavaEmailServer, we considered 10 versions—1.2.1 through 1.4—

spanning a duration of about two years. Version 1.4 consists of 20 classes and

about 2500 SLOC. Table 5.4 shows the release date, source lines of code and

summary of updates to each new version.

Figure 5.6 shows the high-level structure of JavaEmailServer’s code.

The application creates multiple Post Office Protocol (POP) and Simple Mail

Transfer Protocol (SMTP) protocol handler threads. The number of threads

can be configured by the user. Each thread listens on its respective port (110

for POP and 25 for SMTP), waiting for new client connections. Upon receiving

a client request, the server thread communicates with the client, services the

client’s command, and goes back to listening again. The main loop of POP

and SMTP servers are in Pop3Processor.run() and SMTPProcessor.run()

respectively. The POP server authenticates users, reads their e-mail messages

from the filesystem and sends them to the client through the network. The

108

SMTP server reads in e-mail messages from the network and writes them

to the filesystem. These messages may be meant to be delivered to local

users or relayed to other servers on the internet. Message delivery is handled

by a single SMTPSender thread, which polls the filesystem for new messages

and writes them into user mailboxes, or relays them to other servers. The

number of threads and therefore the maximum number of clients that can

simultaneously be serviced is fixed and known when the application starts.

The server will ignore clients that try to connect when all server threads are

responding to requests. At any moment, the run() methods of all threads

and based on server load, additional methods to handle the POP and SMTP

protocols and methods to deliver messages are active on stack.

5.2.2.1 Updates to JavaEmailServer

Approaches that only support updates to method bodies will be able

to handle only four of the updates shown in Table 5.4. We could successfully

construct updates for all versions we examined and we could successfully apply

all of them except the update to version 1.3. For all updates but the one from

1.3.1 to 1.3.2 (shown in Figure 3.3), default transformers were sufficient.

Version 1.3 has 20% fewer SLOC than its prior version because the

update reworked the entire configuration framework of the server. Among

other things, this version removes a GUI tool for user administration and

adds several new classes that implement a file-based configuration system. As

a result, many classes are modified to point to a new configuration object.

Among these classes are threads with infinite processing loops that accept

POP and SMTP requests. Because these threads are always active, the safety

condition can never be met and thus the update cannot be applied.

109

1 // Listen on socket for POP client connections
2 // Handle a client
3 public class Pop3Processor implements Runnable {
4 public void run() {
5 while (true) {
6 Socket client = serverSocket.accept();
7 handleCommands();
8 }
9 }

10 }
11

12 // SMTPProcessor is similar to Pop3Processor
13

14 // Poll the filesystem and deliver messages
15 public class SMTPSender implements Runnable {
16 public void run() {
17 while (true) {
18 if (messageToBeDelivered)
19 deliverMessages();
20 sleep();
21 }
22 }
23 }
24

25 public class Mail {
26 public static void main(String args[]) {
27 // Create 5 POP threads
28 for (int i = 0; i < 5; i++)
29 new Thread(new Pop3Processor()).start();
30

31 // Create 5 SMTP threads
32 for (int i = 0; i < 5; i++)
33 new Thread(new SMTPProcessor()).start();
34

35 // Create one thread that delivers mail
36 new Thread(new SMTPSender()).start();
37 }
38 }

Figure 5.6: JavaEmailServer code: High level organization

110

SLOC # classes # changed

Ver. Total Without
JmDNS add del classes methods fields

add del chg add del

1.05 13,852 13,852
1.06 13,926 13,926 4 1 1 0 0 3/0 1 0
1.07 18,081 14,066 0 0 3 4 0 14/0 5 0
1.08 18,108 14,093 0 1 3 2 0 10/0 0 2

Table 5.5: Summary of updates to CrossFTP server

The update from 1.3.1 to 1.3.2 indirectly changes the SMTPSender.-

run() and Pop3Processor.run() methods. These methods contain process-

ing loops run by several threads. Though these methods are always running,

Jvolve applies OSR and the update succeeds. Jvolve also uses OSR for the

update from 1.3.2 to 1.3.3.

5.2.3 CrossFTP server

CrossFTP server is an easily configurable, security-enabled File Trans-

fer Protocol (FTP) server. CrossFTP allows simple configuration through a

Graphical User Interface (GUI) and more advanced customization using con-

figuration files. The GUI interface also allows detailed monitoring of server

operation and a real-time look at active clients and the commands they issue.

We did not use the GUI interface and therefore do not consider changes to

that part of the program.

We looked at 4 versions of CrossFTP—1.05 through 1.08, details shown

in Table 5.5—spanning a duration of more than a year. Version 1.08 contains

about 18,000 SLOC across 161 classes. Version 1.07 added over four thousand

SLOC by including code from JmDNS, a Java implementation of multi-cast

DNS [84]. We did not exercise this functionality in our runs.

111

1 public class FtpServer implements Runnable {
2 // main loop of server
3 public void run() {
4 while (true) {
5 Socket cl = serverSocket.accept();
6 RequestHandler rh = new RequestHandler(cl);
7 (new Thread(rh)).start();
8 }
9 }

10 }
11

12 // Handle a single client
13 public class RequestHandler implements Runnable {
14 private BufferedReader reader;
15 private FtpWriter writer;
16 private boolean isClosed;
17

18 // main loop of server-client conversation
19 public void run() {
20 while (!isClosed) {
21 String command = reader.readLine();
22 service(command, writer);
23 }
24 }
25 }
26

27 // Creates a single server thread
28 public class CommandLine {
29 public static void main(String args[]) {
30 FtpServer server = new FtpServer();
31 (new Thread(server)).start();
32 }
33 }

Figure 5.7: CrossFTP code: High level organization

112

Figure 5.7 shows the high level organization of the server’s code. The

server has one active thread, an instance of FtpServer which listens on a

socket for client connections. The main loop of the server is shown in func-

tion FtpServer.run(). For each client, the server spawns a new thread, an

instance of the class RequestHandler. At any point of time, the applica-

tion is running one server thread and multiple connection threads, one for

each active client connection. The main loop to handle a client is given in

RequestHandler.run(). The server reads a command from the client, ser-

vices the command and waits for the next one. In steady state, FtpServer’s

run method, RequestHandler’s run method and methods involved in process-

ing particular FTP commands from the client are active on stack.

5.2.3.1 Updates to CrossFTP

Jvolve successfully applies all three updates to this application. For

all three updates, the default transformers we sufficient. Note that since all

updates either add or delete fields, simple method body updating support on

its own would be insufficient.

Jvolve could only apply the update from version 1.07 to 1.08 when

the server was relatively idle. The server runs a new RequestHandler thread

to process each FTP session, and the RequestHandler.run() method was

changed by the update. Jvolve installs a return barrier on this method,

but with many active sessions, this method is essentially always on stack,

preventing the update.

113

5.3 Conclusion

Our evaluation shows that Jvolve is the first full-featured dynamic

updating system that imposes no steady-state overhead. To perform an up-

date, Jvolve pauses the application for a modest time period, roughly equal

to a full heap garbage collection pause. Jvolve is the most versatile dynamic

updating system for Java and supports 20 of 22 real-world updates written

over a one to two year period to three open-source server programs.

114

Chapter 6

Related Work

Researchers have designed and implemented dynamic updating solu-

tions in a variety of contexts, ranging from theoretical models of updates and

safety, to language design for dynamic updating, to practical DSU systems for

C and Java, and to operating systems with DSU support. In this chapter, we

compare our VM-centric approach to DSU with related work on implementing

DSU for managed languages, C, and C++.

6.1 Dynamic Software Updating for C/C++

There are several substantial systems for dynamically updating C and

C++ programs that target server applications [42, 3, 64, 21, 51, 62] and oper-

ating systems components [75, 8, 20, 48, 52]. While these systems are mature

and offer substantial updating experience, the flexibility afforded by Jvolve

is comparable or superior.

Jvolve’s timing restrictions and Java’s type safety also provide com-

parable or superior safety. Because C is a type-unsafe language, DSU systems

for C have to restrict certain unsafe C idioms and perform conservative anal-

ysis to enforce type-safety of updates. The lack of a VM is a disadvantage

for C and C++ DSU. For example, because a VM-based JIT can compile and

recompile replacement classes, it imposes no steady-state execution overhead.

115

By contrast, C and C++ implementations must use either statically-inserted

indirections [42, 64, 75, 8, 51] or dynamically-inserted trampolines to redirect

function calls [3, 20, 21, 5]. Both cases impose persistent space and time over-

head on normal execution and inhibit optimization. Likewise, because these

systems lack a garbage collector, they either do not update object instances at

all [5], update them lazily [64, 21] or perform extra allocation and bookkeeping

to locate the objects at update-time [8].

Because these systems lack support for on-stack replacement, they must

pre-compile potentially long-running methods specially, so that they can be

updated while they run. These techniques impose time and space overheads on

steady-state execution, and in some cases limit update flexibility. Some prior

systems [62, 51, 21] have focused on means to reach DSU safe points quickly,

and Jvolve is comparable in support when it comes to single-threaded appli-

cations. For multithreaded applications, Stump’s synchronization of multiple

threads to reach a safe point [62] and Upstare’s support to update active meth-

ods on stack [51] are superior to what Jvolve provides. While we did not

implement such features in Jvolve, its model does not preclude such support.

6.1.1 K42 Operating System

K42 is an object-oriented research operating system with dynamic up-

dating support out of IBM Research. Updates are performed at the granularity

of an object instance. K42 is structured as a set of objects, with objects ex-

porting an interface by declaring a virtual base class. All objects that are

updated must provide state transfer functions to export the old version to a

common format and import from the common format to the new version. K42

reaches a safe point by reaching a quiescent state. The OS services requests

116

by creating a new kernel thread for each request. To perform an update, K42

restricts new accesses to updated objects, waits until all prior requests/threads

have completed, and then performs the update. Finally, to support access to

the new version of an object, K42 uses an object translation table. Each object

in the system has an entry in the table, and all object invocations go through

the table. At update time, K42 modifies the table to invoke the new versions

of an object.

6.1.2 Ksplice

Ksplice [5] is a dynamic updating system for the Linux kernel. Ksplice

is very easy to use and takes as input a source patch to the currently running

kernel, and generates a binary patch that can be applied to the running kernel.

Ksplice only supports changes to method bodies, and does not support function

or type signature changes. However, this flexibility has been sufficient to

support most patches that fix security vulnerabilities. Like all C systems,

Ksplice needs some form of function indirection to jump to the new version of

a method. Ksplice does so by installing trampolines at update time. Ksplice

overwrites the first few instructions of the old version’s method body with a

jump instruction to the new method. Future calls to an updated method jump

through this trampoline to the latest version’s body. Ksplice uses activeness

check and prevent updates when changed methods are active on some thread’s

stack.

6.1.3 Ginseng

Ginseng [64, 60] is a DSU system for C server applications, and is very

flexible in supporting changes to method bodies, method signatures, structure

117

definitions, and global data. Ginseng uses standard techniques needed of DSU

systems without a managed runtime to support updates to code and data.

Ginseng uses function indirection to make calls to the right version of a met-

hod and “type wrapping” to check that accessed data has the right version of

a type. Ginseng’s offline patch generator generates state transformers for up-

dated types, and the runtime uses padding to accommodate additional space

required by new versions of objects. The application invokes state transformers

lazily when it first accesses an object after the update.

While Ginseng does not support changes to active methods on stack,

programmers may annotate long running loops, extract loop bodies into their

own methods, and then update between loop iterations. To guarantee type-

safety, Ginseng must first deal with the type-unsafeness of C. Ginseng pro-

hibits the use of certain C idioms that are unsafe. Ginseng also introduced a

notion of safety called transaction safety in which programmers mark trans-

action regions. The system’s analysis restricts certain update points within a

region to ensure that a transaction runs entirely as the old version or as the

new version.

6.1.4 Upstare

Upstare [51, 50] supports dynamic updates to multi-threaded C pro-

grams. Upstare performs a whole-program compilation and extensively in-

struments an application to make it update-compatible. Upstare uses func-

tion indirection for function calls, instruments function entry and exit points,

and loop back edges to guarantee “immediate updates” when the user sig-

nals the application to update. These instrumentation points are precisely the

same VM safe points that Jvolve uses. Like Jvolve, Upstare allows the

118

programmer to specify update points by making API calls from within the ap-

plication, or initiate an immediate update upon receiving a signal from a user.

Upstare suspends all application threads and performs atomic updates, just

like Jvolve does. It relies on complex synchronization to suspend all but one

application thread, the update co-ordinator thread which performs the update.

Upstare cannot perform an update when threads are waiting on blocking sys-

tem calls. This restriction is especially problematic for multithreaded server

application threads which are often blocked waiting for requests. Jvolve’s

thread synchronization mechanism is much simpler and supports blocking sys-

tem calls in a straightforward manner.

Upstare’s support for stack reconstruction is unique among dynamic

updating systems. Upstare extracts the state of a function’s stack, and recon-

structs it as expected by the new version of a function. This reconstruction

support enables even modified functions to be active on stack. Stack recon-

struction requires the programmer to specify state transformers for the local

variables of functions, and correspondence between execution points in the old

and new function bodies. Jvolve restricts its On-Stack Replacement (OSR)

support to methods with identical bytecodes in the old and new versions. As

a result, Jvolve currently does not require a stack state transformer or a

mapping or execution. There is no conceptual reason why Jvolve wouldn’t

be able to support an extended OSR, but for the additional burden on the

programmer.

6.2 Dynamic Software Updating for managed languages

Researchers have adopted several approaches to bring DSU support to

managed languages. These include special-purpose compilation, class loaders,

119

or VM-support. The main drawback of approaches that do not change the

VM are inflexibility and high overhead.

6.2.1 Edit and continue development

Debuggers and IDEs have long provided edit and continue (E&C) func-

tionality that permits limited modifications to program state to avoid stopping

and restarting during debugging. For example, Sun’s HotSwap VM [81, 27],

.NET Visual Studio for C# and C++ [56], and library-based support [29] for

.NET applications all provide E&C. These systems restrict updates to code

changes within method bodies. While this restriction reduces safety concerns

and obviates the need for class and object transformers, the resulting systems

are inflexible. A request for enhanced dynamic updating has the fourth highest

number number of votes among enhancement requests recorded in the Hotspot

VM bug database [79, 80]. These systems cannot perform more than half of

the updates discussed in Chapter 5.

6.2.2 Solutions without VM-support

JRebel [91] is a productivity tool targeting Java EE (Enterprise Edi-

tion) developers. JRebel watches changes to the source tree of a web appli-

cation under development and applies these changes to a running VM. De-

velopers do not have to restart their application after every change, thereby

speeding up development. JRebel is implemented on top of the Sun Hotspot

VM’s instrumentation API. When loading a class, JRebel rewrites the byte-

codes of all methods, intercepting all method calls and field accesses. JRebel

implements method and field accesses by performing a dictionary lookup, and

incurring a high performance overhead, like in an interpreted language such as

120

Python or Ruby. When a new version of a class is available, JRebel updates

the dictionary to point to the new method versions. While JRebel supports

addition and deletion of fields, it does not update the state of existing ob-

jects, rendering updates type-unsafe. It also has no notion of update timing

for safety. Because of the performance overhead and the lack of type safety,

JRebel is suited mainly to ease debugging during development.

Barr and Eisenbach [7] support updates to Java libraries in a client

server model. The system supports a subset of updates to Java programs

that do not cause linker errors. Milazzo et al. [57] support dynamic updating

in a distributed computing environment. Their work proposes a specialized

software architecture to monitor updates, and distribute them across the ap-

plication. Both systems use custom classloaders for binary-compatible and

component-level changes respectively, but cannot support signature changes

such as class field additions.

Orso et al. [67] use source-to-source translation for DSU by introducing

a proxy object that indirectly accesses an object that may change. For each

class C that might change in the future they produce a proxy for that class. All

calls from clients of C are redirected to call the wrapper instead. When C is

updated by some new class C’, a new C’ object is created and initialized using

the old state of C and the wrapper is redirected to point to C’. This approach

requires updated classes to export the same public interface, forbidding new

public methods and fields.

Non VM-based approaches are in general limiting because they are not

transparent—they make visible changes to the class hierarchy, and insert or

rename classes. This approach makes it essentially impossible to be robust

in the face of code using reflection or native methods. Moreover, the indirec-

121

tion imposes time and space overheads on steady-state execution. Our VM

approach naturally supports reflection and native methods (these are updated

as well), is more expressive, e.g., it supports signature changes, and imposes

no overhead on steady-state execution.

6.2.3 VM support for DSU in managed languages

The PROSE system performs short-term, run-time patches to code for

logging, introspection, and performance adaptation, rather performing general

updates [65]. An Eclipse plug-in performs run-time bytecode instrumentation

and a modified JIT performs method code replacement, using an API in the

style of aspect-oriented programming. PROSE has the same update model

as the E&C systems: it supports updates to method bodies but not class or

method signature changes that require changes to object state. This flexibil-

ity is similar to the E&C implementations discussed above; indeed, PROSE

builds on the HotSwap method replacement support in its Sun JDK imple-

mentation [81].

JDrums [72] and the Dynamic Virtual Machine (DVM) [53] both imple-

ment DSU for Java within the VM, providing a programming interface similar

to Jvolve, but are lacking in two ways. First, neither JDrums nor DVM

have ever been demonstrated to support updates from real-world applications.

Second, their implementations impose overheads during steady-state execu-

tion. They both update lazily and use an extra level of indirection (the handle

space). Indirection conveniently supports object updates, but adds extra over-

head. For example, JDrums traps all object pointer dereferences to apply VM

object transformer function(s) when the object’s class changes. Lazy updating

has the advantage that it amortizes pauses due to an update over subsequent

122

execution. The main drawback is that its overhead persists during normal

execution, even though updates are relatively rare. DVM works only with the

interpreter. Relative to this interpreter, which is already slow, the extra traps

result in roughly 10% overhead.

Compared to these two, Jvolve performs updates eagerly by employ-

ing a full heap collection at update-time. This stop-the-world approach im-

poses a longer pause at update time, but eliminates overhead during steady-

state execution. Likewise, by invalidating updated methods, Jvolve’s perfor-

mance is slowed just after the update as these methods are being recompiled.

However, compared to running with an interpreter, steady-state execution is

much improved, since methods will be much better optimized.

6.2.4 Dynamic ML

Gilmore et al. [36] propose DSU support for modules in ML programs

using a similar, but more restrictive programming interface compared with

Jvolve. They formalize an abstract machine for implementing updates using

a copying garbage collector. Duggan [28] also proposes dynamic updates to ML

programs, focusing on lazy updates to data type definitions. Neither approach

was ever implemented.

6.2.5 Language support for DSU

UpgradeJ [13] is an extension to the Java language design support-

ing class upgrades, in two flavors: revision upgrades, which may modify met-

hod bodies, and evolution upgrades, which may add new methods and fields.

Programmers control the effects of upgrades using version annotations, intro-

duced by Bierman et al. [12]. For example, the programmer may write o =

123

new Button[1=]() to force o to always use version 1 methods, while writing

p = new Button[1+]() or p = new Button[1++]() allows p to be revised or

evolved, respectively. UpgradeJ’s update model is easier to implement than

Jvolve’s because it need not change existing object instances. Of course, the

downside is a loss of flexibility. Many of the updates to our benchmark ap-

plications change field contents and layout. UpgradeJ does not support these

updates. On the other hand, evolution upgrades add power over simple met-

hod body updates, and consequently enable more real-world updates to be

supported [82]. There currently is no implementation of UpgradeJ.

6.3 Updates in a persistent object store

Boyapati et al. [17] support dynamic updates to classes kept in a per-

sistent object store (POS). While the setting is different, their basic update

model, and in particular their notion of object transformer function, is similar

to ours. In their system, programmers manually write an object transformer

that they view as a method on the old version of the updated class, i.e., the

transformer method is type-safe with respect to the old class. In Jvolve, ob-

ject transformers may access the new versions of objects pointed to from the

old class. Instead, Boyapati et al.’s transformers may access the old versions.

To implement this model, they rely on encapsulation based on ownership types :

if an object a of class A has an “owned” field pointing to an object b of class

B, then only a can point to (and access) b. Encapsulation thus ensures the

system will always transform a before b, which makes the transformation algo-

rithm more efficient. They rely on the programmer to enforce encapsulation,

and describe how the compiler could automate language support for encap-

sulation in a non-standard type system. Jvolve takes the opposite tack of

124

forcing old object fields to point to up-to-date objects, and thus requires no

special language support. Moreover, Jvolve’s model follows that of earlier

work [8, 64, 62, 51] which has proven its effectiveness on a half-dozen realistic

applications across several years’ worth of releases.

Boyapati et al. also differs from Jvolve in that, like JDRUMS and

DVM, updates are applied incrementally as objects are accessed following an

update rather than all at once using a stop-the-world GC. This incremental

cost is more natural in a POS since indirection is already required to access

external objects. The POS model also permits programmers to specify ACID

transaction boundaries, which can help ensure that updates are applied con-

sistently and safely. In contrast, our work focuses on supporting dynamic

upgrades in a high-performance VM for Java, and thus many of the issues we

consider—reaching a safe point via return barriers and OSR, and coexisting

with the JIT compiler—are the unique contributions of our work.

6.4 Summary

Table 6.1 summarises features, strengths, and limitations of four DSU

systems for C/C++ — Ginseng, Upstare, Ksplice, and K42; updates in a per-

sistent object store; and three DSU systems for Java — JDrums, DVM, and

Jvolve. The table denotes advantages of a system with a ‘3’, disadvantages

with ‘5’, and neutral features with a ‘•’. But for Upstare’s generic stack re-

construction support, Jvolve is superior to every other DSU system in one or

more ways.

This recent surge in the design and development of dynamic updating

system shows a rising demand for highly available software and the limitations

125

C/C++ Java

G
in

se
ng

U
ps

ta
re

K
sp

lic
e

K
42

B
oy

ap
at

i
et

al
.

JD
ru

m
s

D
V

M

Jv
ol

ve

Supported changes
Method body 3 3 3 3 3 3 3 3
Method types 3 3 5 3 3 3 3 3
Data/type signatures 3 3 5 3 3 3 3 3
Across class hierarchy - - - 5 - 5 5 3
Updates to active methods 5 3 5 5 5 5 5 5

Update timing
Old changed code runs after update •
Atomic update implementation • •
Activeness safety • • • • • •

Data changes
No access indirection 5 5 - 5 5 - - 3
Does not use padding 5 5 - 3 3 - - 3

State transformers
Automatically generated 3 3 - 3 3 3
Refer to old/new state (O/N) O O - O O - - N
Run Lazily/Eagerly (L/E) L L - L L - - E

Flexibility
Multi-threaded 3 3 3 3 3 5 5 3

Performance
No steady-state time overhead 5 5 3 5 3 5 5 3
No steady-state space overhead 5 5 3 3 5 5 5 3

Legend
3 Advantage 5 Disadvantage
• Neutral - Not applicable

Table 6.1: Comparison of DSU systems

126

in other systems reveal the difficulties inherent in combining performance,

efficiency, and flexibility as we did in Jvolve.

127

Chapter 7

Conclusion

This dissertation presents Jvolve, a Java Virtual Machine with sup-

port for Dynamic Software Updating. Jvolve is the most fully-featured, best-

performing DSU implementation for Java to date. The key contribution of

this dissertation is showing how to achieve safe, flexible, and efficient dynamic

software updating by extending existing Virtual Machine services including

dynamic class loading, thread synchronization, return barriers, on-stack re-

placement, just-in-time compilation, and garbage collection. We demonstrate

Jvolve’s success by applying updates for one to two years worth of releases

for three programs: Jetty webserver, JavaEmailServer, and CrossFTP server.

This dissertation explores state transformers with behavior that de-

pends on each object’s state, and uses such transformers to repair application

state at update time for certain classes of bugs. This dissertation also in-

troduces a novel dynamic analysis to automatically generate object-specific

transformers.

Our work demonstrates how dynamic software updating support can

be integrated into modern VMs, and that doing so has the potential to signif-

icantly improve software availability by reducing downtime.

128

Bibliography

[1] B. Alpern, D. Attanasio, J. J. Barton, M. G. Burke, P.Cheng, J.-D.

Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel,

D. Lieber, V. Litvinov, M. Mergen, T. Ngo, J. R. Russell, V. Sarkar,

M. J. Serrano, J. Shepherd, S. Smith, V. C. Sreedhar, H. Srinivasan, and

J. Whaley. The Jalapeño Virtual Machine. IBM System Journal, 39(1),

Feb. 2000.

[2] B. Alpern, D. Attanasio, J. J. Barton, A. Cocchi, S. F. Hummel,

D. Lieber, M. Mergen, T. Ngo, J. Shepherd, and S. Smith.

Implementing Jalapeño in Java. In ACM SIGPLAN Conference on

Object-oriented Programming Systems, Language, and Applications,

pages 314–324, Denver, Colorado, Nov. 1999.

[3] G. Altekar, I. Bagrak, P. Burstein, and A. Schultz. OPUS: Online

Patches and Updates for Security. In USENIX Security Symposium,

pages 287–302, Baltimore, Maryland, Aug. 2005.

[4] J. L. Armstrong and R. Virding. Erlang—An Experimental Telephony

Switching Language. In 13th International Switching Symposium,

Stockholm, Sweden, 1991.

[5] J. Arnold and F. Kaashoek. Ksplice: Automatic rebootless kernel

updates. In ACM SIGOPS/EuroSys European Conference on Computer

Systems, pages 187–198, Nuremberg, Germany, Apr. 2009.

129

[6] M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. F. Sweeney. Adaptive

optimization in the Jalapeño JVM. In ACM SIGPLAN Conference on

Object-oriented Programming Systems, Language, and Applications,

pages 47–65, Minneapolis, Minnesota, Oct. 2000.

[7] M. Barr and S. Eisenbach. Safe Upgrading without Restarting. In

IEEE International Conference on Software Maintenance, pages

129–137, Amsterdam, The Netherlands, Sept. 2003.

[8] A. Baumann, J. Appavoo, D. D. Silva, J. Kerr, O. Krieger, and R. W.

Wisniewski. Providing Dynamic Update in an Operating System. In

USENIX Annual Technical Conference, pages 279–291, Anaheim,

California, Apr. 2005.

[9] A. Baumann, J. Appavoo, R. W. Wisniewski, D. D. Silva, et al.

Reboots are for Hardware: Challenges and Solutions to Updating an

Operating System on the fly. In USENIX Annual Technical Conference,

pages 337–350, Santa Clara, California, June 2007.

[10] A. Baumann, A. Baumann, D. D. Silva, O. Krieger, and R. W.

Wisniewski. Improving Operating System Availability With Dynamic

Update. In Workshop on Operating System and Architectural Support

for the On-Demand IT Infrastructure, pages 21–27, Boston,

Massachusetts, Oct. 2004.

[11] D. Berlind. Vista forces reboots.

http://news.zdnet.com/2422-13568_22-157931.html.

[12] G. Bierman, M. Hicks, P. Sewell, and G. Stoyle. Formalizing Dynamic

Software Updating. In Workshop on Unanticipated Software Evolution,

130

http://news.zdnet.com/2422-13568_22-157931.html

Warsaw, Poland, April 2003.

[13] G. Bierman, M. Parkinson, and J. Noble. UpgradeJ: Incremental

typechecking for class upgrades. In AITO European Conference on

Object-Oriented Programming, pages 235–259, Paphos, Cyprus, July

2008.

[14] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and Water? High

Performance Garbage Collection in Java with MMTk. In International

Conference on Software Engineering, pages 137–146, Edinburgh,

Scotland, May 2004.

[15] S. M. Blackburn, K. S. McKinley, R. Garner, C. Hoffman, A. M. Khan,

R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,

M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,

D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann.

Wake Up and Smell the Coffee: Evaluation Methodology for the 21st

Century. Communications of the ACM, 51(8):83–89, Aug. 2008.

[16] M. D. Bond and K. S. McKinley. Leak Pruning. In ACM Conference

on Architectural Support for Programming Languages and Operating

Systems, pages 277–288, Washington, DC, Oct. 2009.

[17] C. Boyapati, B. Liskov, L. Shrira, C.-H. Moh, and S. Richman. Lazy

modular upgrades in persistent object stores. In ACM SIGPLAN

Conference on Object-oriented Programming Systems, Language, and

Applications, pages 403–417, Anaheim, California, Oct. 2003.

[18] J. Buisson, C. Carro, and F. Dagnat. Issues in applying a model driven

approach to recongurations of satellite software. In ACM Workshop on

131

Hot Topics in Software Upgrades, pages 6:1–6:5, Nashville, Tennessee,

Oct. 2008.

[19] C. Chambers and D. Ungar. Making pure object-oriented languages

practical. In ACM SIGPLAN Conference on Object-oriented

Programming Systems, Language, and Applications, pages 1–15,

Phoenix, Arizona, Oct. 1991.

[20] H. Chen, R. Chen, F. Zhang, B. Zang, and P.-C. Yew. Live updating

operating systems using virtualization. In ACM SIGPLAN Conference

on Virtual Execution Environments, pages 35–44, Ottawa, Canada, June

2006.

[21] H. Chen, J. Yu, R. Chen, B. Zang, and P.-C. Yew. POLUS: A POwerful

Live Updating System. In International Conference on Software

Engineering, pages 271–281, Minneapolis, Minnesota, May 2007.

[22] C. J. Cheney. A Nonrecursive List Compacting Algorithm.

Communications of the ACM, 13(11):677–678, Nov. 1970.

[23] E. Daugherty. Java SMTP/POP EMail Server.

http://sourceforge.net/projects/javaemailserver.

[24] J. deJong. Java Becoming Solution for Safety-Critical Applications.

Software Development Times, Aug. 2007.

http://www.sdtimes.com/link/31052.

[25] D. Dig and R. Johnson. How do APIs evolve?: A story of refactoring.

Journal of Software Maintenance and Evolution: Research and Practice,

18:83–107, March 2006.

132

http://sourceforge.net/projects/javaemailserver
http://www.sdtimes.com/link/31052

[26] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, and E. F. M.

Steffens. On-the-Fly Garbage Collection: An Exercise in Cooperation.

Communications of the ACM, 21(11):966–975, Nov. 1978.

[27] M. Dmitriev. Towards Flexible and Safe Technology for Runtime

Evolution of Java Language Applications. In Workshop on Engineering

Complex Object-Oriented Systems for Evolution, Tampa Bay, Florida,

Oct. 2001.

[28] D. Duggan. Type-based hot swapping of running modules. Acta

Informatica, 41(4-5):181–220, 2005.

[29] M. Eaddy and S. Feiner. Multi-Language Edit-and-Continue for the

Masses. Technical Report CUCS-015-05, Columbia University

Department of Computer Science, Apr. 2005.

[30] Eagle Rock Alliance Ltd. Cost of Downtime: Online Survey Results.

http://contingencyplanningresearch.com/2001%20Survey.pdf,

2001.

[31] ej-technologies GmbH. jclasslib Java Bytecode Viewer.

http://jclasslib.sourceforge.net.

[32] T. Ekman and G. Hedin. The Jastadd Extensible Java Compiler. In

ACM SIGPLAN Conference on Object-oriented Programming Systems,

Language, and Applications, pages 1–18, Montreal, Quebec, Canada,

Oct. 2007.

[33] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.

Tschantz, and C. Xiao. The Daikon system for dynamic detection of

133

http://contingencyplanningresearch.com/2001%20Survey.pdf
http://jclasslib.sourceforge.net

likely invariants. Science of Computer Programming, 69(1–3):35–45,

Dec. 2007.

[34] J. Fenn and A. Linden. Hype Cycle Special Report for 2005. Gartner

Group, 2005.

[35] S. J. Fink and F. Qian. Design, implementation and evaluation of

adaptive recompilation with on-stack replacement. In International

Symposium on Code Generation and Optimization, pages 241–252, San

Francisco, California, Mar. 2003.

[36] S. Gilmore, D. Kirli, and C. Walton. Dynamic ML without Dynamic

Types. Technical Report ECS-LFCS-97-378, LFCS, University of

Edinburgh, December 1997.

[37] D. Gupta. On-line Software Version Change. PhD thesis, Department

of Computer Science and Engineering, Indian Institute of Technology,

Kanpur, Nov. 1994.

[38] D. Gupta, P. Jalote, and G. Barua. A Formal Framework for On-line

Software Version Change. IEEE Transactions on Software Engineering,

22(2):120–131, 1996.

[39] C. M. Hayden, E. A. Hardisty, M. Hicks, and J. S. Foster. Efficient

Systematic Testing for Dynamically Updatable Software. In ACM

Workshop on Hot Topics in Software Upgrades, pages 9:1–9:5, Orlando,

Florida, Oct. 2009.

[40] M. Hicks. Dynamic Software Updating. PhD thesis, Department of

Computer and Information Science, University of Pennsylvania, August

2001.

134

[41] M. Hicks and J. S. Foster. Adapting Scrum to managing a research

group. Technical report, University of Maryland, Department of

Computer Science, June 2008.

[42] G. Hjálmtýsson and R. Gray. Dynamic C++ Classes, A lightweight

mechanism to update code in a running program. In USENIX Annual

Technical Conference, pages 65–76, New Orleans, Louisiana, June 1998.

[43] U. Hölzle and D. Ungar. A third-generation SELF implementation:

reconciling responsiveness with performance. In ACM SIGPLAN

Conference on Object-oriented Programming Systems, Language, and

Applications, pages 229–243, Portland, Oregon, Oct. 1994.

[44] Internet Storm Center. Survival Time.

http://isc.sans.org/survivaltime.html.

[45] Jetty webserver project. Powered by jetty.

http://docs.codehaus.org/display/JETTY/Jetty+Powered, Dec.

2009.

[46] R. E. Jones and R. D. Lins. Garbage Collection: Algorithms for

Automatic Dynamic Memory Management. Wiley, July 1996.

[47] M. Jump and K. S. McKinley. Cork: Dynamic Memory Leak Detection

for Garbage-Collected Languages. In ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, pages 31–38, Nice,

France, 2007.

[48] Y.-F. Lee and R.-C. Chang. Hotswapping Linux kernel modules.

Journal of Systems and Software, 79(2):163–175, 2006.

135

http://isc.sans.org/survivaltime.html
http://docs.codehaus.org/display/JETTY/Jetty+Powered

[49] D. E. Lowell, Y. Saito, and E. J. Samberg. Devirtualizable Virtual

Machines enabling general, single-node, online maintenance. In ACM

Conference on Architectural Support for Programming Languages and

Operating Systems, pages 211–223, Boston, Massachusetts, Oct. 2004.

[50] K. Makris. Whole-Program Dynamic Software Updating. PhD thesis,

Arizona State University, December 2009.

[51] K. Makris and R. Bazzi. Multi-Threaded Dynamic Software Updates

Using Stack Reconstruction. In USENIX Annual Technical Conference,

pages 397–410, San Diego, California, June 2009.

[52] K. Makris and K. D. Ryu. Dynamic and Adaptive Updates of

Non-Quiescent Subsystems in Commodity Operating System Kernels.

In ACM SIGOPS/EuroSys European Conference on Computer Systems,

pages 327–340, Lisbon, Portugal, Mar. 2007.

[53] S. Malabarba, R. Pandey, J. Gragg, E. Barr, and J. F. Barnes. Runtime

Support for Type-Safe Dynamic Java Classes. In AITO European

Conference on Object-Oriented Programming, pages 337–361, Sophia

Antipolis and Cannes, France, June 2000.

[54] R. Marejka. Java ME Technology: Everything a Developer Needs for

the Mobile Market. Sun Developer Network, July 1998. http://java.

sun.com/developer/technicalArticles/javame/mobilemarket/.

[55] L. Mearian. IBM Builds Java System for NYSE. Computer World, Dec.

2004. http://www.computerworld.com/s/article/98376/IBM_

Builds_Java_System_for_NYSE.

136

http://java.sun.com/developer/technicalArticles/javame/mobilemarket/
http://java.sun.com/developer/technicalArticles/javame/mobilemarket/
http://www.computerworld.com/s/article/98376/IBM_Builds_Java_System_for_NYSE
http://www.computerworld.com/s/article/98376/IBM_Builds_Java_System_for_NYSE

[56] Microsoft Corporation. Edit and Continue.

http://msdn2.microsoft.com/en-us/library/bcew296c.aspx, 2008.

[57] M. Milazzo, G. Pappalardo, E. Tramontana, and G. Ursino. Handling

run-time updates in distributed applications. In ACM Symposium on

Applied Computing, pages 1375–1380, Santa Fe, New Mexico, Mar. 2005.

[58] D. Mosberger and T. Jin. httperf: A Tool for Measuring Web Server

Performance. SIGMETRICS Performance Evalualtion Review,

26:31–37, December 1998.

[59] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney. Producing

wrong data without doing anything obviously wrong! In ACM

Conference on Architectural Support for Programming Languages and

Operating Systems, pages 265–276, Washington, DC, Oct. 2009.

[60] I. Neamtiu. Practical Dynamic Software Updating. PhD thesis,

Department of Computer Science, University of Maryland, August 2008.

[61] I. Neamtiu, J. S. Foster, and M. Hicks. Understanding Source Code

Evolution Using Abstract Syntax Tree Matching. In International

Workshop on Mining Software Repositories, pages 1–5, St. Louis,

Missouri, May 2005.

[62] I. Neamtiu and M. Hicks. Safe and Timely Dynamic Updates for

Multi-threaded Programs. In ACM SIGPLAN Conference on

Programming Language Design and Implementation, pages 13–24,

Dublin, Ireland, June 2009.

[63] I. Neamtiu, M. Hicks, J. S. Foster, and P. Pratikakis. Contextual Effects

for Version-Consistent Dynamic Software Updating and Safe Concurrent

137

http://msdn2.microsoft.com/en-us/library/bcew296c.aspx

Programming. In ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, pages 37–50, San Francisco, California, Jan.

2008.

[64] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol. Practical Dynamic

Software Updating for C. In ACM SIGPLAN Conference on

Programming Language Design and Implementation, pages 72–83,

Ottawa, Canada, June 2006.

[65] A. Nicoara, G. Alonso, and T. Roscoe. Controlled, Systematic, and

Efficient Code Replacement for Running Java Programs. In ACM

SIGOPS/EuroSys European Conference on Computer Systems, pages

233–246, Glasgow, Scotland, Apr. 2008.

[66] D. Oppenheimer, A. Brown, J. Beck, D. Hettena, J. Kuroda,

N. Treuhaft, D. A. Patterson, and K. Yelick. ROC-1: Hardware

Support for Recovery-Oriented Computing. IEEE Trans. Comput.,

51(2):100–107, 2002.

[67] A. Orso, A. Rao, and M. J. Harrold. A Technique for Dynamic

Updating of Java Software. In IEEE International Conference on

Software Maintenance, pages 649–658, Montreal, Canada, October 2002.

[68] Y. Padioleau, J. L. Lawall, and G. Muller. Understanding Collateral

Evolution in Linux Device Drivers. In ACM SIGOPS/EuroSys

European Conference on Computer Systems, pages 59–71, Leuven,

Belgium, Apr. 2006.

[69] S. Parker. A simple equation: IT on = Business on. The IT Journal,

2001.

138

[70] F. Pizlo. Personal communication, based on experience at Fiji Systems

LLC., Dec. 2009.

[71] J. W. Pratt and J. D. Gibbons. Concepts of Nonparametric Theory.

Springer-Verlag, 1981.

[72] T. Ritzau and J. Andersson. Dynamic Deployment of Java Applications.

In Java for Embedded Systems Workshop, London, May 2000.

[73] D. Scott. Assessing the Costs of Application Downtime. Gartner

Group, 1998.

[74] Slashdot forum. Patch the Kernel Without Reboots.

http://tech.slashdot.org/article.pl?sid=08/04/24/1334234,

Apr. 2008. Consists of a lively technical debate about the benefits and

drawbacks of in-place dynamic updates vs. using redundant hardware.

[75] C. Soules, J. Appavoo, K. Hui, D. D. Silva, G. Ganger, O. Krieger,

M. Stumm, R. Wisniewski, M. Auslander, M. Ostrowski, B. Rosenburg,

and J. Xenidis. System Support for Online Reconfiguration. In

USENIX Annual Technical Conference, pages 141–154, San Antonio,

Texas, June 2003.

[76] Sourceforge.net. CrossFTP Server.

http://sourceforge.net/projects/crossftpserver.

[77] G. Stoyle, M. Hicks, G. Bierman, P. Sewell, and I. Neamtiu. Mutatis

Mutandis : Safe and Flexible Dynamic Software Updating (full version).

TOPLAS, 29(4):22, Aug. 2007.

139

http://tech.slashdot.org/article.pl?sid=08/04/24/1334234
http://sourceforge.net/projects/crossftpserver

[78] S. Subramanian, M. Hicks, and K. S. McKinley. Dynamic Software

Updates: A VM-centric Approach. In ACM SIGPLAN Conference on

Programming Language Design and Implementation, pages 1–12, Dublin,

Ireland, June 2009.

[79] Sun Developer Network Bug Database. Enhance Hot Code

Replacement.

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4910812,

Aug. 2003.

[80] Sun Developer Network Bug Database. Top 25 RFE’s (Request for

Enhancements). http://bugs.sun.com/bugdatabase/top25_rfes.do,

Apr. 2010.

[81] Sun Microsystems. Java Platform Debugger Architecture (JPDA), 2004.

This supports class replacement. See

http://java.sun.com/javase/6/docs/technotes/guides/jpda/.

[82] E. Tempero, G. Bierman, J. Noble, and M. Parkinson. From Java to

UpgradeJ: an empirical study. In ACM Workshop on Hot Topics in

Software Upgrades, pages 1–5, Nashville, Tennessee, Oct. 2008.

[83] The Jikes RVM Core Team. VM Performance Comparisons, 2007.

http://dacapo.anu.edu.au/regression/perf/head.html.

[84] A. van Hoff. JmDNS: Java implementation of multi-cast DNS.

http://jmdns.sourceforge.net.

[85] Vision Solutions. Understanding Downtime. May 2006.

140

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4910812
http://bugs.sun.com/bugdatabase/top25_rfes.do
http://java.sun.com/javase/6/docs/technotes/guides/jpda/
http://dacapo.anu.edu.au/regression/perf/head.html
http://jmdns.sourceforge.net

[86] C. Walton. Abstract Machines for Dynamic Computation. PhD thesis,

University of Edinburgh, 2001. ECS-LFCS-01-425.

[87] D. Wheeler. SLOCCount. http://www.dwheeler.com/sloccount/.

[88] Wikipedia. Jetty Webserver.

http://en.wikipedia.org/wiki/Jetty_(web_server), 2010. [Online;

accessed 22-January-2010].

[89] Wikipedia. Source lines of code.

http://en.wikipedia.org/wiki/Source_lines_of_code, 2010.

[Online; accessed 25-January-2010].

[90] T. Yuasa. Design and implementation of Kyoto Common Lisp. Journal

of Information Processing, 13(3):284–295, 1990.

[91] ZeroTurnaround. JRebel. http://www.zeroturnaround.com/jrebel.

[92] B. Zorn. Personal communication, based on experience with Microsoft

Windows customers, August 2005.

141

http://www.dwheeler.com/sloccount/
http://en.wikipedia.org/wiki/Jetty_(web_server)
http://en.wikipedia.org/wiki/Source_lines_of_code
http://www.zeroturnaround.com/jrebel

Vita

Suriya Subramanian graduated from high school in 1999. He received

a Bachelor of Engineering degree from College of Engineering, Guindy, Anna

University in 2003. He received a Master of Science degree in Computer Sci-

ences from the The University of Texas at Austin in 2006.

Permanent address: “Sri Ram Nilayam”
Plot No. 12, C R Ramakrishnan Puram (East)
Virugambakkam
Chennai - 600 092
Tamil Nadu
India

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

142

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1. Introduction
	Chapter 2. Background
	Updating Code
	Updating data
	Implementation mechanisms
	Semantics of state transformers

	Safety of updates
	Assuring safety by testing

	Update Timing
	Updates to active methods
	Multithreaded applications

	Conclusion

	Chapter 3. Jvolve System
	Introduction
	Supported Changes
	VM object model and method dispatch
	Jvolve's view of updates
	Class and Object Transformers

	Implementation
	Preparing the update
	DSU safe points
	On-Stack Replacement to lift category (2) restrictions
	Installing modified classes
	Applying Transformers

	Conclusion

	Chapter 4. State Transformers: Models and Automation
	Object Transformation Model
	Eager transformation models
	Discussion
	Lazy transformation model

	Repairing Application State
	Memory leaks in Java
	Fixing corrupt heap state for leaks

	Automating State Transformer Generation
	Invariants discovered from real fixes

	Conclusion

	Chapter 5. Evaluation
	Performance
	Jetty Webserver performance
	Microbenchmark performance

	Applications
	Jetty webserver
	JavaEmailServer
	CrossFTP server

	Conclusion

	Chapter 6. Related Work
	Dynamic Software Updating for C/C++
	K42 Operating System
	Ksplice
	Ginseng
	Upstare

	Dynamic Software Updating for managed languages
	Edit and continue development
	Solutions without VM-support
	VM support for DSU in managed languages
	Dynamic ML
	Language support for DSU

	Updates in a persistent object store
	Summary

	Chapter 7. Conclusion
	Bibliography
	Vita

